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ABSTRACT

With the increasing opportunities for research in a
microgravity environment, there arises a need for understanding
fluid mechanics under such conditions. 1In particular, a number
of material processing configurations involve fluid-fluid
interfaces which may experience instabilities in the presence
of external forcing. In a microgravity environment, these
accelerations may be periodic or impulse-type in nature. This
research investigates the behavior of a multi-layer idealized
fluid configuration which is infinite in extent. The analysis
is linear, and each fluid region 1is considered 1inviscid,
incompressible, and immiscible.

An initial parametric study of configuration stability in
the presence of a constant acceleration field is performed.
The zero mean gravity limit case serves as the base state for
the subsequent time-dependent forcing cases. A stability
analysis of the multi-layer fluid system in the presence of
periodic forcing is investigated. Floquet theory is utilized.
A parameter study is performed, and regions of stability are
identified. For the impulse-type forcing case, asymptotic
stability is established for the configuration. Using numerical

integration, the time response of the interfaces is determined.
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CHAPTER 1

INTRODUCTION

1.1 Literature review

The microgravity environment aboard the space shuttle has
given rise to an number of research opportunities which will
increase when space station becomes operational. In
particular, materials processing , which generally involves
fluid configurations, will involve processes which exhibit
significantly different behavior in a microgravity environment.
The gravity-induced fluid-thermal flows: ie. buoyancy-driven
convection in 1liquids, will no longer contribute. This
physical phenomenon masked the presence of thermo-capillary
flows, which will now assume a greater role in a microgravity
environment'.

The effect of gravity has been greatly reduced in
low-gravity aircraft flights and drop tubes which provide short
periods of microgravity, sufficient for some research, but
certainly too brief for most materials processing experiments.
The advent of extended spaceflight has dramatically increased
the opportunities for long-duration research and development in
space. There are numerous technological applications which are
envisioned in a microgravity environment.

The growth of crystals for electronic materials has not

reached theoretical performance limits due to defects caused in



part by the presence of gravity. During the spacelab missions,
scientists were able to monitor growth of a crystal through
each stage of its formation. In earth-grown crystals, it can
be observed where the seed crystal stops and the new growth
begins. The introduction of such a defect was not detected in
space due to the lack of gravity-induced convection®.

The great reduction in convection is also relevant to
metallurgical manufacturing. A microgravity environment
provides greater understanding of how liquefied metals diffuse
through each other prior to solidification. Such knowledge is
important for the production of improved and novel alloys.

Containerless processing makes possible the production of
much improved glasses and ceramics. 1In such a process, the
sample 1is suspended and manipulated by acoustical and
electromagnetic forces without the <contamination of a
container. Large samples can be dealt with in a microgravity
environment®,

Biological processing also benefits from space. Large,
pure crystals allow analysis of many unknown protein structures
which are essential to the design of new and improved dfugs.
There is also effort towards the separation and purification of
biological substances for pharmaceutical purposesrhzﬂ

In the absence of gravity, fluid behavior which might
normally be hidden by gravity-driven flows in a terrestrial

environment can be observed and analyzed. Drop and fluid

column dynamics in microgravity permit experimentation of basic



fluid physics theories. Experiments have been performed
concerning the stability of liquid bridges in a short term
microgravity on a rocket'®, Also, experimental work has been
done on board Spacelab to investigate the shapes of rotating
free drops in a microgravity environment?®. 1In fact, the fluid
configurations of drop dynamics and liquid columns will occur
not only in fundamental studies, but also in materials
processing applications. For example, the proposed
solidification of novel alloys could take place in an acoustic
levitation chamber, with the liquid sample having a drop
configuration.

A float zone configuration can be utilized in the growth
of crystals. The float 2zone itself is modeled by a 1liquid
column. In materials processing applications, heat and mass
transfer effects are present in addition to the fluid dynamics.
In fact, Marangoni convection would occur in the liquid column
in a realistic processing scenario. It is currently thought
that this convection could be reduced via the addition of a
surrounding layer of fluid around the float zone. This would
result in a multi-layer, compound fluid column configuration®.

The environment on board a spacecraft is not strictly a
microgravity environment. Rather, residual accelerations exist
which could affect any ongoing materials science or space
processing experiments. A recent sv.munar:y'22 indicates that
on board the space shuttle, accelerations include those in the

frequency range up to ten hertz, with acceleration 1levels



ranging from 10" 5%geartn  to 10 #Geartn. In addition to
periodic accelerations (g-jitter), residual accelerations may
be of impulse type, due to such causes as station-Keeping
maneuvers and astronaut motion®’.

Most processes involve fluid dynamics, and in particular,
fluid interfaces. This study does not investigate a specific
process per se, but instead considers the stability of
initially planar fluid interfaces.

Previous work on fluid interfaces in microgravity has
focused predominantly on the application of fuel slosh in
tanks. Most recently, this has included work done by Hung et
al’, which considered g-jitter in a slosh tank. A brief
review of earlier work, as well as an extension of the previous
efforts, was given by Gu et al’. These investigations all
involved liquid in a container of specified shape with a free
surface.

The stability of a single planar free surface subjected to
periodic forcing 1in the direction perpendicular to the
interface has been investigatedm°. Both studies were done in
a 1-g ambient environment and required the use of a container.
In the work of Benjamin and Ursella, the container was
cylindrical in shape. The analysis led to a Mathieu equation
which governed the time-dependent amplitude of the disturbance.
They were able to make statements concerning the interface

stability based upon known mathematical properties of Mathieu

equations. The case of a rectangular container has been



addressed recently by Gu®, and the results extended into the
nonlinear regime. Both of these investigations utilized an
inviscid analysis.

Viscous effects on the stability properties have been
investigated recently in idealized infinite or semi-infinite
configurations which have one fluid-fluid inter face®!?. The
forcing was periodic and directed perpendicular to the
interface. The work of Jacqgmin and Duval'? assumed a zero mean
g-level and pertained to a microgravity environment. A Floquét
analysis was applied to the fluid system for the case of
sinusoidal forcing. Stability boundaries were obtained from
the results.

Recently, Jacqmin has studied the stability of an
oscillated fluid with a uniform density gradient". The case
of forcing perpendicular to the density gradient was
investigated. Such a problem involves the Kelvin-Helmholtz
instability.

1.2 Objectives

This 1research will <consider a multi-layer fluid
configquration unbounded in space. Multi-layer fluid
confiqurations are finding applications in materials processing -
scenarios in microgravity. Although the infinite, multiple
layer fluid system is not physically realistic, it is the

logical extension of work done previously in the one interface,



infinite systen. As such, it will provide insight into the
behavior of configurations with multiple interfaces in the
presence of forcing.

A layer of finite height will be situated between two
semi-infinite layers of fluid. The analysis is linear, and
each fluid region 1is considered inviscid, irrotational,
incompressible, and immiscible. A normal mode approach in the
spatial variables will be assumed. Surface tension is the only
property of each interface and 1is taken to be constant.
Jacqmin and Duval showed that the presence of even weak surface
tension can overwhelm the effects of viscosity, making the
viscous analysis of secondary importancc'z.

The objective is to investigate the configuration behavior
in the presence of microgravity environment acceleration
fields. As stated previously, these may manifest as periodic
or non-periodic impulse-type accelerations. It is recognized
that in practice, the true acceleration field will be random in
magnitude and orientation. Two subcases will be investigated:
1) periodic forcing directed normal to the interface (a cosine
forcing function will be assumed), 2) non-periodic but
time~dependent normal impulse forcing.

As a preliminary step to this investigation, the stability
of the configuration in the presence of a constant acceleration
field will be investigated (Chapter 2). Regions of stability

and various parametric trends will be established. The zero

mean gravity limit case will ultimately serve as the base state



for the investigation of the time-dependent acceleration cases.

The periodic forcing case results in a system of four
ordinary differential equations (in time) with periodic
time-dependence. Such a problem is well-posed for application

5,28

of Floquet theory in which the time-dependent coefficients

are expressed in terms of a Floquet exponent. Previous work in

fluid mechanics has utilized Floquet theory&lz. It |is,
however, more generally applied to dynamical systemsa{ One
recent application involved the analysis of a

spin-stabilized satellite in orbit®®. 1In the periodic forcing
case, the system of fluid equations can be converted to an
infinite algebraic eigensystem. The nature of the real
component of the eigenvalue will determine confiquration
stability. The effect of six non-dimensional parameters will
be investigated.

For the non-periodic case, asymptotic stability will be
established according to mathematical theory. The system
results in four linear differential equations which will be
integrated numerically. The time response of each interface

will be determined, and parametric trends will be discerned.



CHAPTER 2

MULTI-LAYER FLUID CONFIGURATION STABILITY IN THE PRESENCE
OF CONSTANT ACCELERATION FIELDS

2.1 Problem description

Prior to an analysis of stability of a multi-layered
configuration in the presence of time-dependent forcing, cases

will be considered in which the body force is due entirely to a

constant gravitational acceleration. The 1limit cases of
l1*gearth and O*gearth are studied, as well as various
intermediate values. The O*Qgearth mean state will ultimately

serve as a basis for investigating the effects of residual
accelerations in Chapters 3 and 4.

The configuration to be considered is comprised of three
horizontal fluid layers. No rigid boundaries are present. The
layers extend ¢to infinity in the horizontal directions.
The top and bottom layers are considered to be semi-infinite
in nature, while the middle layer has a finite height. The
geometry of the figure is given by Figure 2.1.

The base state is one of zero mean motion in each of the
three fluid regions. The fluids are immiscible and will be
taken as inviscid, irrotational and incompressible. Surface
tension is a property of the interfaces. A normal mode
approach is assumed. That is, the small amplitude
perturbations are wavelike in nature.

The fluids considered in this study are water, air, and



Configuration Geometry

region2 p2, ¢

y=h+eng
regionl P, ¢ h
y
y =enm *
é -— —N ————— ‘-_'—’
X
Yo
region3 p3. ¢

p = density of subscripted region
¢ = potential function of subscripted region
Y = surface tension of subscripted interface

M = perturbation of subscripted interface

Figure 2.1



silicone o0il. Four different «cases are examined in the

following configurations:

CASE 1: air/silicone oil/water (region 2/region l/region 3)
CASE 2: air/water/air "
CASE 3: air/silicone oil/air "

CASE 4: water/silicone oil/water "

The parameters to be varied include height of the middle
slab, wave number of the interfacial perturbation, and the
value of the constant gravitational acceleration. By varying
these quantities, the propagation speed of the perturbations
can be calculated for different parameter conditions. A
positive value of the imaginary component of the propagation
speed will indicate an instability on the fluid system.

Several of the <cases to be investigated have a
configuration such that the density of the upper fluid is
greater than that of the lower fluid, giving rise to a motion
driven by gravity. This type of instability is known as the
Rayleigh-Taylor instability. It will be shown that the growth
rate of these instabilities is determined by the nature of the
solution to the dispersion relation. More specifically, if a
certain confiquration generates non-zero imaginary components
of the propagation speed, then depending on the sign of the

quantity, the Rayleigh-Taylor instability will occur.

10



2.2 Equation development

2.2a Governing equations

As stated previously, a normal mode perturbation has been

utilized. The waveform of the disturbance is given by the
following:
n(x,t) = gelk(X=ct) (2.1)
where € = amplitude (small)
k = wave number (real number)
¢ = propagation speed (complex number)
n = interface shape

The governing equations of incompressible fluid mechanics
are the continuity equation and the momentum equation. The
analysis is inviscid, irrotational, and linear. Linearization
is done about a base state of zero mean motion. The following

equations govern fluid behavior.

v-g: = 0 (2.2)
82:

p — = -Tp (2.3a)
at

0= -vaean + pge (2.3b)

11



Note the momentum equation has been split into the perturbation
(2.3a) and mean (2.3b) equations Henceforth, primes will be
omitted for perturbation values.

A potential function, ¢, with u = 9¢, 1is defined.

Substitution into equation (2.2) yields Laplace’s equation.
72 = 0 (2.4)
Laplace’s equation must be solved in all three regions.

Separation of variables yields the following solutions for the

potential functions.

6, = [ AekY 4+ B‘-ky] olk(x-ct) (2.5)
¢2 - CQ-kyeik(x-ct) (2.6)
¢, = De’¥elk(x=ct) (2.7)

where A, B, C, and D are constant coefficients.

Furthermore, at each interface the perturbation is defined

as

12



= pelk(x-ct) (2.8)

eik(x-ct)

F (2.9)

Mr1r

2.2b Boundary conditions
The dispersion relation is obtained by applying three
boundary conditions at each interface. These three conditions
are: (1) the kinematic boundary condition, (2) the
matching of the normal component of the velocity, and (3) the
normal force balance.
The kinematic condition states that a particle of fluid
which is at some point on the surface will always remain on

that surface. This can be written as:

D(y=em), o (2.10)
Dt

By converting into Eulerian form, and noting that x, vy,
and t are independent and that the waveform depends solely on x

and t, the equation (after linearization) becomes:

13



3
8 (x,t) = 22 (X,y_+Em, €) (Y = 0 or h) (2.11)
at ay

By applying a Taylor expansion and again neglecting
quadratically small terms, the kinematic boundary condition at

each interface simplifies to:

an
% (x,n,t) = —2L (x,t) (2.12)
ay at
3¢ My
(x,0,t) = (x,t) (2.13)
ay at

Imposition of the condition that the normal component of

velocity be continuous across the interface yields:

3¢ 8¢
1.2 at y =h (2.14)
ay 3y
a¢ ¢
1.2 at y = 0 (2.15)
3y oy

Finally, the third boundary condition is imposed. Taking

14



into account the surface tension, the normal force balance

takes the following form:

Plower™ Pupper = 79 (2.16)

where 7 surface tension

A

the outward pointing normal to the interface

By noting that the perturbation is a function of x and t

only, the final boundary conditions can be derived at each

interface.
2

220 21 gy uay) —nu (2.17)
Py, —= = p, — + g(p, -p = -7 .
2 5t 1 5 2 P i1 117, 2

¢, ¢4 ( ) az"nr (2.18)
Py —= = Py —= + g(p,=p.)M = -y — .
1 5e 3 3¢ 17P3! 111 111, 2

2.2c Dispersion relation

These six algebraic equations (2.12-2.15,2.17,2.18) form a
homogeneous system in unknowns A,B,C,D,E, and F. In order to
have a solution, the determinant corresponding to this system
must equal zero. This results in the following dispersion

relation.
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[(pl+p3)(pl+pz)e2kh + (pz-pl)(pl-p3) !

+ [{(pl+p3)( =P ) =111 X) +(p %0, ( %(pl-pJ)-leIk)} kP

2

+ (py=py) ( RPy=P )+ T111K) *+ (P1=P4) ﬁ(pz-pl)-vIIk)] c

+ [ {( %(91‘93)'TIIIK)( g(pz-pl)-wlIk)} e2kh

+ ( $lpympy) =71 1K) ( §<p3-p1)-1mx)] - 0 (2.19)

Thus, this propagation speed, c, is given by the solution

of a fourth order polynomial. It is also the eigenvalue.
From the theory of roots of a polynomial, it is readily seen
that there exists the possibility of complex roots to the
dispersion relation. The propagation speed can be written as a

complex number.

cC = cR + 1c! (2.20)

Hence, the perturbation equations can actually be written as:

16



ikx e(-1cht) e(kcxt)

nII = Ee (2.21)
_ ikx (-ikc t) _(kc t)
Mr11° Fe e R e I (2.22)
The first two exponential terms of each equation are

oscillatory in nature. The third exponential factor is a real
number. An imaginary component equal to zero implies a neutral
disturbance, while if the value 1is less than zero, the
exponential term decays in time, and the system remains stable.

However, if this imaginary component, c is positive, the

!
exponential term grows in time, resulting in an instability.
This case is known as the Rayleigh-Taylor instability. An
analytical 1limit case can be obtained from the full dispersion
relation for the special case in which the ratios of the top

and bottom densities to the middle density are negligibly

small.
kh 2kh -7:.K 7 4
[ez -1]c‘ + [(e +1) ( —E‘I’I - %il )]c2
s @y (g- B (- TE)] -0 ey
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For such cases, the configuration will remain stable if the

following inequality holds true.

2
Tyrek p p
ITI 2 3
—_— z g for — , = « 1 (2.24)
Py P P
The scope of this study is to analyze the four

previously stated cases under various parameter conditions.
That is, by allowing the parameters to vary over a specified
range, the roots of the dispersion relation can be calculated
rand hence, interface stability can be determined. The
parameters that are considered are the height of the middle
layer, the wave number, and the value of the gravitational
constant. For our ultimate purposes, we are most interested in
the case in which the time-independent gravitational body force

is zero.

2.3 Results

The dispersion relation was solved numerically using the
DZPORC routine of the IMSL library. The DZPORC routine makes
use of the Jenkins-Traub three-stage algorithm‘a, in which the
roots are computed one at a time for real roots and two at a
time for complex conjugate pairs. As the roots are found, the
real root or quadratic factor is removed by polynomial

deflation.
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The fourth order polynomial (in c¢) has four roots. Because
of the nature of the dispersion relation, the roots
were dgenerated in pairs. That 1is, for any given solution,
there exist two pairs of roots, where each pair consists of
the positive and negative values of a number. Physically, for
real roots, this means the perturbation may propagate in either
the positive or negative direction. For imaginary roots, it
implies an instability will occur since these roots occur in
complex conjugate pairs. If all the roots are real, the system
will be stable.

Figure 2.2 shows the four roots of the dispersion relation
for Case 1 (air/silicone oil/water). The roots are plotted
over a range of gravity ratios (g/geartn) from 0 to 1.0. As is
expected, since heavier fluids underlie lighter ones this case
is stable for all parametric conditions. (Note that the
non-zero roots are exclusively real.) A less dense fluid above
a more dense fluid is stable to small perturbations in the
presence of constant gravitational forcing.

Figures 2.3, 2.4, and 2.5 show the dispersion solution for
Cases 2,3, and 4, respectively. Each of these cases reveals
the presence of a positive imaginary root, which in turn,
implies an unstable configuration. This behavior is expected
as each case involves a more dense fluid above a less dense
fluid in its configuration.

Since an instability depends solely on the presence of
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positive imaginary roots, the subsequent figures will display
these particular roots exclusively.

The effect of wave number, (k), on configuration stability
is elucidated in Figures 2.6-2.8. As k values increase, the
configuration becomes more stable. Since k is inversely
proportional to wavelength, the configuration is unstable to
long wavelength perturbations. The restoring force required to
maintain stability is greater in the long wavelength regime.

Note that all cases are stable at O*gearth. The results
of Case 1 do not appear since the configuration is stable for
all parameter space.

The effect of surface tension can be readily seen by
comparing Figure 2.6 with 2.7, where the middle 1layers are
water and silicone o0il, respectively. Thus, while their
densities are effectively the same, the water-air interfaces
have surface tension values nearly three times that of the
oil-air interfaces. With the increased restoring force, it is
expected and confirmed that Figure 2.6 will be more stable than
Figure 2.7. In the water case (Fig. 2.6), for a k value of 3,
the system is stable up to g=0.65*%geartn. For the oil case
(Fig. 2.7), for k=3, the configuration becomes unstable at
g=0.23*Qearth,

From Figure 2.9, it is tempting to conclude that the .
middle slab height, (h), has no effect on the stability of the
configuration. This conclusion is valid for values of h which

are large in comparison to the wavelength (recall A = 2n/k).
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when the nondimensional quantity, h/A, is greater than or on
the order of one, middle layer height has little effect on the
stability. In Figure 2.9, this corresponds roughly to values
of h z Scm (for k=lcm ). For h=1cm, the quantity, h/A, equals
0.16 which is less than 0(l1). From Figure 2.9 it is seen that
this height is associated with the fastest growing
instabilities.

The effect of middle layer height is even more dramatic in
Figures 2.10 and 2.11. The fastest growing instabilities for a
given wavelength perturbation are associated with
configurations with the smallest values of h/A. In Figure
2.10, the smallest value of h/A equals 0.04 (corresponding to
h=0.25cm, k=1.0cm l). Note that this value relates to the
fastest growing instability.

The 1limit case (eq. 2.24) simulates a 1liquid layer
situated between two layers of a gas, and its accuracy can be
verified by comparing it to either Figure 2.6 or 2.7.
According to (2.24), for Case 2 (air/water/air), and h=1cm, the
instability should originate at g/geartn=0.073 for k=1, and at
g/gearth =0,661 for k=3,

For Case 2 (air/silicone oil/air), and h=lcm, the
instability should start at g/Gearth=0.027 for k=1,
g/Qearth=0.230 for k=3, and g/gearth=0.657 for k=5, The
results from Figures 2.6 and 2.7 confirm these values.

It is seen that in the case of zero gravity, each

configquration remains stable. Although we might expect

21



Rayleigh-Taylor type instabilities for Cases 2,3, and 4, there
is no body force which would drive the density difference;
hence, the system will remain stable.

This zero mean gravity state will be taken as the base

state for the remainder of the investigations of this thesis.
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CHAPTER 3

MULTI-LAYER FLUID CONFIGURATION STABILITY IN THE PRESENCE
OF A TIME-DEPENDENT PERIODIC ACCELERATION FIELD

3.1 Problem description

The results from Chapter 2 illustrated that for constant
zero gravity the fluid configuration is stable for all
parameter values. This, however, is a highly idealized case.
A recent summary22 indicates that the environment of board
space shuttle is subjected to residual accelerations ranging

5 to 10-3*9unm at a frequency range up to 10 Hz.

from 10~

This chapter investigates the effect of periodic
accelerations on the interface stability of a multi-layer fluid
configuration without rigid boundaries. The configuration
consists of a layer with finite height situated between two
semi-infinite layers. All three layers extend to infinity in
the horizontal plane. (See Figure 3.1). The accelerations
are periodic about a zero mean gravity level, and are oriented
normal (in the az direction) to the interfaces.

The three fluids are inviscid, incompressible,
irrotational, and immiscible. Surface tension is a property of
the interfaces. The spatial dependence of the perturbation is
considered to be wavelike.

The dynamics of the above system are again governed by the

continuity and Euler equations. These are non-dimensionalized
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Configuration Geometry

region2 P2, 92

z = H + E(neiix+my)

Yl

region1 P1, 91

z = F(t)eilx+my)

region3 P393

p = density of subscripted region
¢ = potential function of subscripted region

¥ = surface tension of subscripted interface

Figure 3.1
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and linearized,‘resulting in a system of linear equations with
time-dependent coefficients.

A Floquet analysis is applied. The resulting system can
be viewed as an eigensystem in the Floquet exponent. It is the
value of this exponent which will determine the stability of
the configuration. The linear stability of a perturbation to
the interface is thus dependent upon six non-dimensional
parameters: the density ratios of the outer to middle slabs,
the Froude type number, the Bond type number at each interface,

and the wave number.

3.2 Equation development

3.2a Governing equations and non-dimensionalization
The governing equations are the continuity and the
conservation of momentum equations for an incompressible

and inviscid fluid.

Veu = 0 (3.1)

au

A
P + pu-Vu = -p - pG_g(w t)8 (3.2)

ot
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where the time-dependence is apparent in the body force
term. G° represents the peak value of the acceleration due to
the periodic g-jitter. Equation (3.2) is to be linearized
about a state of zero mean motion. Quadratically small terms
are neglected (after expansion in a small disturbance
parameter, €).

Expansions of pressure and velocity fields are as follows:

p=p + ep’..+.. (h.o.t.) (3.3)

mean

uUus=0+ cu'..+.. (h.o.t.) (3.4)

(Note the analysis considers zero mean motion (Ypean™

0).)

The governing equations can be non-dimensionalized to

yield:
Vu' =0 (3.5)
P&
—_—— = -7 p (3.6a)
Pp at
-~ ~ p G -
0 =-ip - — [-2-] g(t) & (3.6b)
mean Pp Hu% b4

36



where u = Hw, u (3.7)
x = HX (3.8)
t o= (lwg) & (3.9)
2 2 ~
P = Pp H we P (3.10)

(Note that Pp is the average of the density differences

across each interface, and We is the forcing frequency.)

Equation (3.6b) is the mean conservation of momentum
equation, and (3.5,3.6a) represents the perturbed system.

Note that due to the periodic time-dependence, the mean
pressure field will also be periodic in time. The parameter
(Go/waz) in equation (3.6b) is taken to be roughly of order
one; this ensures the mean pressure to be of the same order.

For convenience, the tildes will be omitted from this
point forth in Chapter 3. All quantities are henceforth
non-dimensional. Also, the primes will be dropped from
perturbation quantities.

The analysis is incompressible, inviscid, irrotational,
and linear. A potential function can be utilized, giving rise
to Laplace’s equation. Perturbations are taken to be wave-like
in the (xy) plane. The resulting differential equations (in 2)

are solved by separation of variables to yield:
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¢, = [A(t)ekz + B(t)e'kz] gl (1x+my) (3.11)
¢, = [C(t)e'kz] el (1x+my) (3.12)
¢, = [D(t)ekz] el (lx+my) (3.13)

A, B, C, and D are time-dependent coefficients, and Kk

2 _ 42

represents the wave number (k + mz). ¢ is the potential
function. Subscripts indicate the region of interest. The
pressure (both mean and perturbation) can be obtained fron
equations (3.6a) and (3.6b).

A normal mode perturbation approach in the spatially
independent variables is utilized; thus, the equations of each

equilibrium interface can be written as:

i (1x+nmy)

Fe..= 2 - 1 - cE(t)e (3.14)

11

i(lx+my)

Fe = 2 -0 - cF(t)e (3.15)

III

where Fe defines the equation of each equilibrium interface,

and E and F are time-dependent coefficients.
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3.2b Boundafy conditions

Three boundary conditions are imposed on each of the
interfaces: (1) the kinematic boundary condition, (2)
continuity of the normal component of velocity, and (3) the
normal force balance across the interface.

The kinematic boundary condition states that at each
interface

D(Fe) _ ¢ (3.16)
Dt :

which can be expressed as:

279 4 u.v (Fe) = 0 (3.17)

at

Note that after linearization, the gradient of the interface
equation has a contribution in the Gz-direction only.
Imposition of this kinematic condition on each of the two

interfaces yields the following:

on Fe,., E(t) + k c(t)e K = 0o (3.18)

on Fe -F(t) + X D(t) =0 (3.19)

ITT’
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A second boundary condition can be imposed in which the

normal component of the velocity 1is continuous across the

interface.
a¢ a¢
on FeII, —1 .2 (3.20)
az az
3¢, a9, .
on Fer ;. —_— = —= (3.21)
az 8z

After a Taylor series expansion at each interface, the

following relationships are obtained:

A(t)e?X - B(t) = -c(t) (3.22)

A(t) - B(t) = D(t) (3.23)

And finally, a (linearized) normal force balance across

the interface is implemented.

Pyower™ Pupper ™ 7 v-fi (3.24)
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or, in non-dimensional form:

Pp H3w§. A
4 [plower- pupper] = v-n (3.235)

where 7 = surface tension

i = linearized outward pointing normal to the
interface

Recall that the upper and lower pressures each have both a
mean and a perturbation component. Contributions to the
pressure at O(e) (needed in ecquation (3.25)) involve both the
perturbation pressure given in equation (3.26a) and a second
term due to the wave itself. This second term is listed in

equation (3.26b).

-p a¢
ep =cf — _] (3.26a)
pp Ot
pu,l G
second term = [ o ] g(t) eE(t)el(1X*RY) (3.26b)
Pp - Hwg
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Note that the second term also contributes at the lower
interface, with E(t) replaced by F(t).
(Recall that primes have been dropped from the perturbation
pressure.)

Substitution of equations (3.26a,b) into egquation (3.25)
for each respective interface results in the following

relationships at O(¢):

on Fe ,
II
Bo (Py-pP,) P
2 27P1 1 (; K, -k
Fr [ Pp Freg(t)E(t) - 5——(A(t)e +B(t)e )
D
P, . -
v =2 (&(t)e k]] = x%E(t) (3.27)
Pp
on FeIII’
Bo (Py=P7) p
3 17P3 1 (: :
- [ P Frg(e)F(e) + g (Aty+B(t))
D
Py (.
- —3—-[D(t)]] = k2F(t) (3.28)
Pp
2
p. HG G
where Bo2 5 = b o ; Fr = ——32
' T11,111 Hw g

Bo2 3 and Fr are Bond and Froude number type parameters.
’
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By utilizing equations (3.22,3.23), the

and D

time-dependent coefficients can be eliminated from (3.18,3.19)

and (3.27,3.28) to yield the following system.

X -
[~ (1+p,p)e | (P, -1)e
A(t)[ 21 ] + B(t)[ 21 }

Pp1

+ E(t) (Fr)g(t) = —— k" E(t)
Pp1 Bo,
. (1-p.,) ) (1+p.,)
A(t)[————;—ll- ] + B(t)[ 5 31 ]
D1 D1
(1-p.,) Fr
+ F(t) 3" (Fr)g(t)| = — k% F(t)
Ppa1 Bo,

E(t) = k [ A(t)e® - B(t)e-k]

F(t) = Xk [ A(t) - B(t) ]

43
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Thus, the system has been reduced to four ordinary
differential equations (in time) with four time-dependent
unknowns: A,B,E,F. The time-varying forcing function is chosen

to be periodic, with

g(t) = cos(t) = 3 (elf + &7'%) (3.33)

3.3 Application of Floquet theory

Floquet theory can then be applied to system
(3.29-3.32). This is done Dby expressing the four

time-dependent coefficients as

(A(t) ,B(Y),E(t), F(t)] = £° (A B ,E F) "t e (3.34)

vhere A is the Floquet exponent.

By substitution of equation (3.34) into the system (3.29-
3.32), the four ordinary differential equations in time can be
expressed as an infinite algebraic system with the Floquet

exponent appearing as a parameter.
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X -k
= (l+p,. ) e (P, =1)e
(A+in)[ 21 }An + (A+in)[ 21 ]Bn

Pp1 Pp1
(3.35)
(Pyy=1) Fr Fr
21 2 _
+ [ le X ](En_1+ En+1) - [——B—o K ]En = 0
2
(1=p.,) (1+p.,,)
(A+in) 31 A+ (A+in) 31 B,
Pp1 Pp1
(3.36)
(1-p31) Fr Fr 2
+ (F__,+F ) = |— k"|F_ =0
[ Pp1 2 n=l "n+l Bo, n
(A+in)E_ + kB_a X - kA eX = 0 (3.37)
n n n
(A+in)rn + an - kAn = 0 (3.38)

where n varies from -» to +o. This results in an infinite sys-
tem of equations. The set of homogeneous equations

(3.35-3.38) can be written in the form
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(3 - AB) X =20 (3.39)

or AX=2aARX (3.40)

which is the generalized eigenvalue problem. The Floguet
exponent, A , acts as the eigenvalue. X 1is an infinite column

yvector containing the following terms:

m o > m
: : : e v e
] [} ] ]
N I

1>
]
m w >
3

n+l
n+l
n+l

w >»
pe |

+
[ d

—
e s
~

(3 - AB) is the coefficient matrix of X. It is generated in
groups of four rows corresponding to a particular value of n.

Matrices 3 and B are shown in Figures 3.2 and 3.3.
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The solutibn to the single interface problem (Jacqmin and
Duvalfz, utilized Floquet theory and truncated at n = !24].
It was decided that the multi-layer system should be truncated
at least at this level. In our analysis, n is truncated at
25| . This generates a system of 204 equations in which the
Floquet exponent is determined by eigenvalue methods. (A
generalized eigenvalue routine is wused). Details of the

14,15

algorithms are found in Kaufman (1974) and Moler and

Stewart (1973)'°.

3.4 Solution methodology

To solve the large, sparse generalized eigensystem, a
routine DGVLCG from the IMSL library package is utilized.
(See Appendix 5.) This routine is based on the LZ algorithm
described by Kaufman (1974), which in turn is similar to the Q2
algorithm (Moler and Stewart,1973) except that it uses
elementary transformations whereas the latter uses orthogonal

transformations.
3.4a Preliminary checks

Four checks were performed to verify the accuracy of the

solutions.

49



1) The system was converted to a standard eigensystem
of form, (¢ - A I) X = 0 ,which was analyzed using DEVLCG
from IMSL. This particular routine converts the matrix into
a complex upper Hessenberg matrix, in which the eigenvalues

are generated via the QR algorithm (Smith, 1976)%*. There is

agreement of the solution values. (See Appendix 6.)
2) The original matrix was truncated at n = |50/,
producing a much larger matrix. The same eigenvalues were

obtained, with greater multiplicity of each root.

3) The generated Floquet exponents were resubstituted
into the 1linear éystem to compute the determinant by
Gauss’ method. The checks show our eigenvalues to
be accurate. (See Appendix 7.)

4) A 1limit case of the two interface system was
investigated. In this case, Pyy= 1.0 and Bo,= =. The physical
interpretation of such a system is that the top and middle
slabs have the same density, and their interface has :zero
surface tension. Hence, the system can be considered as a one
interface configuration at FeIII'

To compare the results of the limit case, an analysis was
performed for a one interface system following the methodology
of sections 3.2-3.3. This new system reduces to two linear
differential equations which are solved via Floquet analysis in

the same manner as was done for the two interface system.

(See Appendices 2 and 8.) A parameter, Q, appears with
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Q = 1.0 = BO3

(The constant of unity exists due to fact that the Froude
number identically equals one according to a comparison of the
non-dimensionalizations.)

A comparison of the two interface limit case with the one
interface system for the same physical configuration is shown
in Figures 3.4 and 3.5. The éorrelation between the two
systems is evident.

The results of these four separate checks provide great

confidence in the numerical results.

3.4b Solution interpretation

The stability of the system can be determined by the
numerical value of the complex eigenvalues. It is readily seen
from equation (3.34) that the time-dependent coefficients will
grow exponentially for positive real components of the Floquet
exponents. Such a case will imply an instability of the fluid
system. Thus, as the eigenvalues are generated, the presence
of a single positive real part of A will dominate the systen,
causing it to be unstable. As this is a linear analysis, no
information can be obtained concerning the finite amplitude
(nonlinear) form of the configuration.

The system of algebraic equations is non-dimensional.
Thus, the linear stability of the fluid layers depends on six

non- dimensional parameters: the two density ratios, the Froude
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number, the Bond type number at each interface, and the wave
number.

A parametric study is performed to investigate the effects
of parameter variation on the stability of the fluid system.
The parameter space is defined by appropriate values of the six
non-dimensional parameters pertinent to a microgravity
environment.

As stated previously, the complex Floquet exponent (A) is
the eigenvalue of the systen. The presence of a single,
positive real component implies exponential growth of the
interface and hence, a subsequent instability. Thus, we are
concerned solely with the largest real component of the Floquet
exponent. The values of this quantity are charted throughout
the parameter space. A positive value of the largest real
component of the Floquet exponent indicates an instability: a

zero or negative value indicates stability.
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3.5 Results

To display most effectively the regions of instability,
the largest (fastest growing) real component of the Floquet
exponent is plotted as a function of the wave number for fixed
values of Bond and Froude numbers and density ratios.

The range for the parameters is as follows:

0.1 < k < 5.0

BO2 = 1.0, 0.1, 0.01,0.001

BO3

Fr = 5.0, 1.0, 0.5, 0.1

1.0(Bo,), 2.0(Bo,)
(Note that the quantities are nondimensional.)

These values correspond to physically realistic configurations
which might be expected in a microgravity environment as well
as satisfying conditions for linear analysis.

For each case, if the forcing function, g(t), were set to
zero instead of cos(t), the configuration would be stable for
all parameter space. The interfaces would simply oscillate
with no growth of the amplitude. It is only with the forcing,
and in the indicated parameter regions, that instabilities may
occur.

In Figures 3.6-3.25, the effect of 302(803) on stability
for different values of Fr and density ratios is illustrated.

=1.0, =0.001225, Fr=5.0, and 802 is set

For Fig.3.6, P, Paq

equal to Bo,. The unstable wave number region is broadest for
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the largest Bo, (Bo values. As 802(803) is decreased, the

5)

unstable wave number region shrinks to encompass a smaller Kk

2

range and tends towards lower k values. For low 802(803)
values, the configuration 1s unstable to longer wavelength
perturbations in the presence of periodic forcing.

In Figure 3.7, Fr is reduced to 1.0 while other parameter
values remain the same. Though the general qualitative trends
follow, it is seen that the range of unstable wave numbers
is broader than in Figure 3.6.

Figure 3.8 shows an order of magnitude drop in Fr. Again
as 802(803) is increased, the range of unstable wave numbers
broadens. Likewise, as Fr decreases the unstable region
encompasses a broader range of wave numbers.

Similar results are elucidated in Figures 3.9-3.20,
keeping parameter ranges the same for various density ratios.
As 802(803) values are increased, the range of unstable wave
numbers widens (corresponding to smaller wavelength
disturbances).

The density ratios in Figures 3.21-3.23 pertain to a
gas/liquid/gas configuration. The qualitative trends of
varying Fr and 802(803) continue. However, the behavior is
observed to be more peaky, with occasional regions of stability
punctuating unstable wave number bands. For the lowest Fr
(Figure 3.23), the unstable band shifts away from the low Kk

region. Note that in Figure 3.21, the configuration is



stable when 802(503) 1s 0.001. Positive values of the real

component of A occur only for larger Boz(Bo values.

3)

Figures 3.24 and 3.25 show the effect of Bo, not
equal to Bo3. In Figure 3.24 the Bo values are equal, whereas
in Figure 3.25, 803 is twice Boz, keeping all other parameters

the same. Physically, the increase of Bo3 while keeping Fr
fixed can be interpreted as decrease in the surface tension
value at the 1lower interface. The dominant effect is <to
broaden the range of unstable wave numbers for each set of Bo
values. Note that Figure 3.25 shows a narrow band of wave
number stability near k=1.95. In general, the numerical value
of the real part of the Flogquet exponent (A) is increased for
Bo3 twice the value of Bo,, indicating a faster growing
"fastest growing" disturbance.

The effect of varying Fr while holding Boz(Bc3) values
fixed is illustrated in Figures 3.26-3.29. As Fr is decreased,
the range of unstable wave numbers increases. Physically, this
can be interpreted as a decrease in configuration stability for
larger frequencies of the g-jitter. The behavior is typical
for the various density ratios and Bo values which were
considered.

The effect of density ratio difference on stability is
presented in Figures 3.30-3.34. Values of Paq and Paq
represent the density ratios of the upper and lower regions to

that of the middle layer, respectively. Among cases indicated,

the largest value of p [ =(lpy,~1ll+lp,,~1l)/2 ] corresponds
D1 21 31
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to the case having the largest range of unstable wave numbers.
Furthermore, it also corresponds to the largest values of the
real component of the Floquet exponent. In general, as ppq is
decreased, the band of unstable wave numbers becomes more
narrow. Results are typical and illustrative for the parameter
space of concern. Note that Figure 3.34 compares
three configurations of gas/liquid/gas with different gas
densities. The three cases have similar results, indicating
that the density of the gas layers is not too significant.
In addition, the case in which both density ratios were
set to unity, indicating ,equal densities in all three regions,

was addressed. In such a case, equals zero; hence,

Pp1
802(803) values are identically zero. Under the action of
g-jitter, 1lack of density differences between the layers
results in a stable configuration. One would expect the
interfaces to merely oscillate in time. As a further check,
the system was derived using a different definition of Pp
{ pD=(pl+p2+p3)/3 ]. Hence, Bo values are non-zero for equal
densities in each region. Numerical results showed stability
for all parameter values.

The height of the finite middle slab is a physical
quantity which appears in both the Bo and Fr nondimensional
parameters. In particular, Fr is inversely proportional to the
height, while Bo depends on the square of the height. An

increase in height, H, implies a decrease in Fr and an increase

in Bo. As was seen in Figures 3.6-3.25, an increase in Bo
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correspondé to a larger region of unstable wave number space.
From Figures 3.26-3.29, it is seen that the broadest region of
unstable wave numbers occurs at smaller values of Fr. Thus, it

is expected that an 1increase in H will result in a more

unstable fluid configuration. This 1is confirmed in Figure

3.35,. Results are presented graphically for the case GO =
-4 _ _ -

(10 ~*geartn) , wf-o.l Hz, and Y11=V 11T 50 dynes/cm. In

addition, Py1 =0.8, and Pi, =1.2. Larger values of H

correspond to a larger range of unstable wave numbers.

The wave number at which the subharmonic (A=1/2) occurs.
is plotted in Figures 3.36 and 3.37 for a range of Fr with
given values of Bo

(Bo It is seen that there is a gradual

2 (BO3) -
shift of the subharmonic to 1lower wave numbers (or longer
wavelengths) as Fr is increased (ie., as the forcing frequency
decreases) . Figure 3.37 represents the case of unequal Bo
values (Boj=2*Boz). Physically, this implies the surface
tension of the lower interface is halved. It is seen that this
case has subharmonics occurring at larger values of the wave
number than the case of Bo,=Bo, (as shown in Figure 3.36).
Stability boundaries of Fr versus k are plotted in Figures
3.38 and 3.39. This is done for configurations of different
density ratios (as 1indicated by the different area fill
patterns). Moreover, on each graph, multiple values of 802'3
are represented. The unstable regions are indicated by the

rectangular "filled" regions. No meaning is ascribed to the

width of the rectangles. In general, it 1s seen that an
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increase 1n Fr while holding other parameter values fixed
(corresponding to low frequency forcing) results in a smaller
range of unstable wave numbers. Likewise, an increase 1in Bo
values (corresponding to a decrease in the surface tension)
relates to a broader region of instability, in terms of k.

In general, fluid systems involving larger values of Pp1
have wider bands of unstable wave numbers. This is evident in
both Figures 3.38 and 3.39. Note also the 'gaps" in the band
of unstable wave numbers. These represent regions of stability
of the fluid configuration. It is generally at higher k values"
(k > 1) that these bands of stability occur.

The limit case (p21 =1.0, Bo,=«») was used to compare the

2
stability of the one interface configuration with that of
the multi-layer fluid systenmn. To compare the two, the

parameters in each case are set equal at interface Fe In this

5
way, the parameters are consistent in both problems. From
Figures 3.40-3.41, it 1is readily seen that the multi-layered
configuration is more unstable than the one interface fluid
system. The range of unstable wave numbers is broader for the
multi-layered case. In particular, note the contrast in the
low k region (corresponding to large wavelengths). That is, in
the two interface system the very low k region is generally an
unstable region as compared to the one interface case. In the
one interface model, bands of instability are more frequently
punctuated by narrow regions of wave number stability. These

results are typical and 1illustrative for various density

ratios.
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CHAPTER 4

RESPONSE OF MULTI-LAYER FLUID CONFIGURATION TO SHORT-DURATION
NON-PERIODIC TIME-DEPENDENT FORCING

4.1 Problem description and stability considerations

The residual accelerations which occur in a microgravity
environment are generally time-dependent in nature. The
special case of periodic g-jitter was addressed in Chapter 3.
In addition to periodic forcing, residual accelerations may be
of impulse type, due to such causes as station-keeping
maneuvers and astronaut motion. This forcing, though
non-periodic, would certainly still be time-dependent.

This chapter investigates the effect of time-dependent,
non-periodic accelerations on the interface stability of an
idealized fluid configuration. The geometry of the system is
the same as in Chapter 3 (see Figure 3.1). The accelerations
are again oriented normal (in the éz direction) to the
interfaces and have a zero initial value condition.
Moderate-duration responses will primarily be investigated.

The three fluids are assumed inviscid, incompressible,
irrotational, and immiscible. Surface tension is a property of
the interfaces and is taken to be constant. The spatial
dependence of the perturbation is considered to be wavelike.
The fluid system is governed by the continuity and Euler
equations. These equations are non-dimensionalized and
linearized, resulting in a system of linear equations with

time-dependent coefficients.

97



Two forcing functions will be considered: 1) An
exponential ramp followed by exponential decay, and 2) a ramped
step function with both positive and negative values. These
idealized functions were chosen to represent general impulses.

An analytical approach is used to ascertain the asymptotic
(mathematical) stability of the non-autononous system. This
analysis is presented in Section 4.3, with additional reference
to Appendix 3. Note that the system is non-autonomous due to
the explicit appearance of time in g(t).

The system of first-order differential equations is
integrated numerically utilizing Gear’s stiff method' in order
to solve for the time-dependent coefficients, which describe
the response of the interfaces. The interface responses are
plotted as a function of time.

The presence of the '"short duration" non-periodic body
force functions do not modify the asymptotic stability of the
multi-layer fluid configuration. Interest is in the level of
system disturbance in the presence of the acceleration. Since
the effects of viscosity are not incorporated into the
analysis, the long time behavior of the systen, predicted by

the model, is not physically meaningful.
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4.2 Equation development

4.2a Governing equations and non-dimensionalization

The governing equations remain those of conservation of
mass and momentum for an incompressible fluid. Again, the
analysis is inviscid. Linearization is performed about a state
of zero mean motion. (Quadratically small terms are neglected

after expansion in €.) The forcing function is of the form
G 9(t)

where g(t) is non-periodic, and may be represented by a ramp
function, for example. GO is taken to be the peak magnitude of
the forcing function. A positive forcing value is oriented in
the negative éz direction.

For this non-periodic forcing case, the non-

dimensiocnalizations used are:

u=vHG, u (4.1)

IX
]
o o}

1%t

(4.2)
t =vHG ¢t (4.3)

p = pp HG_ P (4.4)
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The non-dimensionalized disturbance governing equations assume

the following form:

'v'.{_}.' =0 (4.5)
au’ oo
£ = = -7 p (4.6a)
Pp st
- - P -~ A
0 = =V Prean - s g(t) e, (4.6b)

where tildes indicate non-dimensional gquantities and primes
denote perturbation values. Equation (4.6b) says the mean
pressure instantaneously adopts a hydrostatic distribution with
a magnitude governed by the instantaneous value of g(t).
Henceforth, the tildes will be dropped, and all quantities are
to be considered non-dimensional. Also, the primes are
dropped.

As in Chapter 3, the pressure and velocity fields were
expanded into a mean and perturbation component. The mean
velocity, as stated previously, equals zero.

An inviscid, irrotational, and incompressible analysis
gives rise to a potential function ( u = V@), which can be
substituted into equation (4.5) to yield Laplace’s equation.
This equation is solved in each region, yielding the same

potential functions as in Chapter 3.
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¢, = [A(t)ekz + B(t)e'kz] el (1x+my) (4.7)

5, = {c(t)e_kz] el (1x+my) (4.8)

¢y = [D(t)ekz] ol (1x+my) (4.9)

where A,B,C,D are time-dependent coefficients. K represents
2

the wave number, where k“ = 12 + mz.

The interface shapes are identical to Chapter 3. Repeating
them here, they are
i(1x+my)

Fe.,= 2 - 1 - eE(t)e

IT (4.10)

i(lx+ny)

Fe =2 -0 - ¢F(t)e (4.11)

4.2b Boundary conditions

Three boundary conditions are imposed at each interface:
(1) the kinematic condition, (2) continuity of the normal
component of the velocity, and (3) a normal force balance

across each interface.
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Imposition of the kinematic condition yields the following

relationships between the time-dependent coefficients:

: -k
on FeII, -E - kCe = 0 (4.12)

on Fe ., -F + XD = 0 (4.13)

The normal component of the velocity must match across each’

interface. Applying this condition gives the following
relationships:
2k _
on Fe, Ae B = -C (4.14)
on FeIII' A -B=0D (4.15)

The linearized normal force balance across each interface

states:

2
pp (H7G,)
4

<>

[plower- pupper] = 0. (4.16)

Note the upper and lower pressures each have a mean and
perturbation component. Substitution into equation (4.16)
follows the same methodology as that discussed in Chapter 3,

resulting in the following system of equations:
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K -k
-(1+p, ) e , (P, -1)e ,
[ 21 } At) + [ 21 } B(t)

Pp1 Pp1
(4.17)
(Pyy=1)g(t) 2
+ 21 - XK E(t) = 0
Pp1 Bo,
(1-p..) 1 . (1+p,.) ] .
31 Act) + 31 B(t)
Pp1 | Pp1 |
(4.18)
(1-p,.)g(t) 2 ]
+ 3L - X L F@) = o
I Pp1 Bo,|
E(t) = k[A(t)ek - B(t)e'k] (4.19)
F(t) = k[A(t) - B(t)] (4.20)

Note that E(t) and F(t) represent the displacement of the
interface due to the perturbation.
This system has thus been reduced to four linear,

non-autonomous differential equations of the form:
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Xx=(B+EB(t) X (4.21)
where X is the unknown vector function containing the

time-dependent coefficients. B is a constant matrix and P(t)

is the time-dependent matrix. (See Figure 4.1.)

4.3 Asymptotic stability

According to Sanchezza, non-autonomous linear systems of-
equations (in the form of equation (4.21)) are asymptotically

stable if three conditions are satisfied:

(1) the characteristic polynomial of B is stable,
(2) the matrix P(t) is continuous on 0 s t < =,

(3) 51 p(E)Il dt <

The functions which are selected will be shown to satisfy
conditions (2) and (3). Condition (1) 1is ascertained by
checking the characteristic polynomial of matrix BRB. For a
stable solution of equation (4.21), the four roots of the
characteristic polynomial of B nust have non-positive real
components (see Appendix 3). Hence, solutions of equation
(4.21) are bounded and stable.

Having ascertained the asymptotic stability of the fluid

configuration, the time response of the interfaces 1in the
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presence of forcing is investigated. The "short durationn

non-periodic body force functions which have been constructeq

do not modify the asymptotic stability of the multi-layer flujiq

configuration. 1Interest is in the level of system disturbance

in the presence of the acceleration, (eg. E(t) and F(t)).

Since the effects of viscosity are not incorporated into the

analysis, the 1long time behavior of the system is not

physically meaningful. However, long-duration responses wjl)

be examined to investigate asymptotic stability.

Note that for asymptotic stability, the forcing function

must be bounded. That is, if g(t) was chosen to be periodijc

(say a cosine function), condition (3) of sanchez would be

violated, and the system of equations would not be

asymptotically stable. This does not imply that the fluid

configuration is unstable to periodic forcing. 1In Chapter 3,

it was shown that there exist regions of parametric stability

in the presence of periodic forcing.

4.4 Results

4.4a Solution methodology

The system of first-order differential equations,
(4.17-4.20), is integrated via DIVPAG of the IMSL 1library.
This routine utilizes Gear’s method to solve for the

time-dependent coefficients®. (See Appendix 9.)

106



It was found to be more convenient to represent the fourth

order system in terms of (E,F,E,F). This is accomplished by

differentiating equations (4.19,20) and substituting into

equations (4.17,18) to eliminate A(t) and B(t). This system is

given as follows:

e = [ ke (8,48, + k(B,-B)| F - ke, (B8, E (4.22)
¢ = [ k808,48, *k(By=B10)| F - kag(8-8,) (4.23)
where

(-(1+p31)ek - e'k(l-p31)) Pp1
8, =

(1+p1) (1+p31) € + (p, 1) (1-p, e K

-(1+p,,)g(t) e (14p,,) k2eX
B, = 8, =
2 Pp1 ? (1=p5,) Bo,
2 x
kp..@
8, = —D1 B = g(t)eX
Boy(1-p4,)
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(Py1=1)g(t) k?
b1 Bo

g = ~2Pp,
8

(14651) (1+p5,)e" + (py1-1) (1-p, )0

kzp
Boy(1-p4,)

The system was integrated for specified non-zero (éo’%o)
values with Eo, Fo both taken to be zero. The E(t) and F(t)
coefficients define the time-development of the interface. L
and ?o are determined from equations (4.12,4.13) where C,=-0.05
and D, =0.05. These values were chosen arbitrarily ‘but are
required to be small to satisfy the restriction to linearity.
The signs were chosen to ensure that both interfaces had the
same direction for their respective velocity fields. This was
decided solely to provide a more realistic physical systenm.
Different values of ¢ and D were investigated with

o o
qualitatively similar results.
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Two time-dependent forcing cases (for tz0) are investigated

and are defined as follows:

1: g(t) = telt*1)

2: =0 if0st<
= t=-1 if 1 st <2
= 1 it 2s¢t <3

g(t) { = -t+4 it 3 st <>
= -] if 5 s ¢t < 6
= t=-7 if 6 s t < 7

| = 0 if tz 7

Case 1 represents exponential growth followed by
exponential decay. Case 2 represents a ramped step function
with forcing in the positive and negative 32 directions. Each
forcing function is shown in Figures (4.11-4.34) as a solid
line. Both cases have an initial value of zero forcing and are
continuous on 0 s t < «» ; hence, condition (2) for asymptotic
stability is satisfied.

Condition 3) requires that the integral over infinity of
the absolute value of the forcing function be finite. For.
forcing case 1 (exponential ramp), the integral is solved by

integration by parts.

(-t+1)

J |} te jjdt = e® < =
0
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ror the step forcing function, case 2, the integral is
subdivided into appropriate time steps and is found to equal 4.
(Note that due to the absolute value in the integral, negative
values of the forcing do not cancel out positives.) Hence, for
poth forcing cases the integral is finite, and condition (3) of
sanchez is satisfied.

The time interval extends in the range, 0 s t < to' where
t, is a value of time significantly greater than the outer
bound of the forcing function.

The time response of each forcing case is investigated for

parameter values pertinent to a microgravity environment.

k = 0.5, 1.0, 2.0
802 = 1.0, 0.1

Bo3 = 1.0(802), 2.0(802)

These values correspond to physically realistic configurations

3

where values of G, range from 10 - to 1073 % geartn.

Two fluid systems are considered:

1) gas/liquid/gas (p21-p31=0.001225)

2) liquid/liquid/liquiad (p21=1.0, p31=1.5)
The reverse of system 2), (p21=1.5, p31-1.0), is investigated
since the forcing cases are directional, and the behavior is

fundamentally different.
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4.4b Numerical results
The shape of the interface is defined by E(t) and F(t),
which are the perturbation displacements. The time response of

E(t) and F(t) are examined for the said parameter space as

described in section (4.4a).

Discussion of zero forcing:

The case of zero forcing was studied to show the time
behavior of E(t) and F(t) in the absence of transient’
accelerations. As expected, the numerical results were
consistent with the fact that the confiquration is
asymptotically stable®?., Results show an oscillatory pattern
that neither grows nor decays exponentially in time (See
Figures (4.2-4.10)). The perturbations are wavelike. Note
that the variation of the interface perturbations in the zero
forcing case is not uniform and sinusoidal. This is due to the
coupling effect of the two interfaces, which have different
velocities according to equations (4.12,4.13). With careful
selectién of constants Co and Do for a specific wave number,
the initial velocities of each interface could be set equal
(E(t)=F(t)). 1In the subcase of E(t)=F(t) and Py1=P5,+ the
time variation of the perturbations is sinusoidal. Although
equal interface velocities provides a more uniform wave on the
interfaces, it is recognized as a special case. The general
case, with fixed Co and D, and hence unequal E and F, is

investigated in the results.
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Also note that as the wave number increases (Figures
4.2,4.3,4.4), the amplitude of the perturbation becomes larger
in magnitude. This is due to the k dependence of the interface
velocities (equations‘ 4.12,4.13). Moreover, note that the
selection of Co and Do must be such that all quantities do not

violate linear theory.

For a fixed wave number for the zero forcing cases, the
amplitudes of E and F are smaller for the gas/liquid/gas
configuration than for the 1liquid/liquid/liquid systems
(compare figure 4.9 with 4.3,4.6 where k=1.0). This is due to
decreased dynamical effects from the gas regions. Different

wave numbers provide similar results.

Discussion of impulse forcing (exponential ramp):

Figures 4.11-4.28 show moderate-duration responses of each
interface to impulse forcing for the specified parameter space.
Figures 4.11-4.19 correspond to the exponential ramp forcing
case. Note that the forcing function is displayed on the
graphs as a solid line. Physically, this function simulates
short-duration impulse forcing which might be due to
disturbances such as astronaut motion. By no way do the
selected functions represent the entire class of possible
impulses. It should be pointed out that positive values of the
forcing correspond to accelerations in the negative e

z
direction.
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Figure 4.11 represents a liquid/liquid/liquid configuraticn
with the most dense fluid being on the bottonm (p21=1.0,
p31=1.5). The interfaces oscillate in time with a fairly
periodic motion. It is clear that the response is greater in
magnitude for higher values of 802(803). Bo values are
inversely proportional to surface tension; hence, an increase
in Bo 1is associated with a decrease in the restoring force at
the interfaces. A decreased restoring force will 1lead to
enhancement of the interface displacement. This trend is
typical throughout the results. Note also that there is an
increase in the period of the perturbation for higher Bo
values. Henceforth, discussion will pertain to responses for
802(803)=1.0 unless otherwise noted.

Comparing Figure 4.11 with 4.2 (the same fluid system with
no forcing, k=0.5), there is an enhancement of the interface
displacements in the presence of forcing. The upper interface
in the zero forcing case has AE_m- 0.13 which increased to
0.21 in the presence of the ramp forcing. This is a 62%
amplification due to impulse forcing. Likewise, at the lower
interface, Al'mincreased from 0.14 to 0.24 for a 72%
enhancement. (Note: AE_“a E_“— E_m) .

The wave number in Figure 4.12 is increased to 1.0 while
holding other parameters fixed. Oscillatory motion still
occurs. Comparing with Figure 4.3 (zero forcing for the same

configuration), there is no enhancement at either interface.

In Figure 4.13 (k=2.0), the ramp forcing results in a smaller
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interface displacement as compared to that of the zero forcing

case (Figure 4.4). Recall that positive values of g(t)
correspond to accelerations in the negative éz ("downward")
direction. The greatest forcing for the ramp function occurs

between t=0 and t=5. During this time period, the interfaces
for Bo=1.0, particularly the 1lower interface (F), are
accelerating in the positive ;z direction. The net
acceleration is smaller than for the zero forcing case, hence
the "negative enhancements" of -30% and -40% at the upper ana
lower interfaces, respectively.

Note that in both Figures 4.4 and 4.13, for Bo=0.1 and
k=2.0, both interfaces are accelerating in the negative 32
direction during the time period in which the peak of the ramp
forcing occurs. Note again that the ramp function is in the
negative az direction. Thus the net acceleration is greater
for the forced case with amplitude enhancements at upper and
lower interfaces of 15% and 30%, respectively.

Note that the results are contrary for Bo=1.0 and Bo=0.1
at this k value of 2.0.

The configuration is inverted for Figures 4.14-4.16, that
is, p21-1.5, p31-1.0. Such a configuration has an unfavorable
density gradient with respect to the direction of the forcing
(ie., a more dense fluid is oriented above a less dense one).
The enhancement of the perturbation amplitude due to forcing
(Figure 4.14) compared to the zero forcing case (Figure 4.5)

for k=0.5 is 67% at the upper interface (E) and 90% at the
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lower interface (F). For k=1.0, the upper and lower interface
amplifications due to ramp forcing are 12% and 11%,

respectively. As with Figure 4.13 (p21=1.0, =1.5), the

P31
situation is reversed for k=2.0, with the non-forced case
exhibiting larger perturbation amplitudes. Inspection of the
interfaces for zero forcing (Figure 4.7) at Bo=1.0 show
perturbation accelerations in the opposite direction of the
impulse forcing during the critical time period (t=0 to t=5).

In general, the enhancements for the unfavcorable density
gradient configuration (p21=1.5, p31=1.0) are greater than
those of the favorable one.

Figures 4.17-4.19 correspond to a gas/liquid/gas
configuration. Difference between forced and unforced cases
are most dramatic at k=2.0. 1In Figure 4.19, there is "negative
enhancement"” for the ramp forcing as compared to the zero
forcing (Figure 4.10). The upper interface exhibits 1little
change, but the lower interface (F) has a 31% decrease in
perturbation amplitude in the forced case. As in the
liquid/liquid/liquid configurations, the cause is an interface
acceleration in the opposite direction of the impulse forcing.

In general, in the presence of ramp forcing the enhancement
is greater at the lower interface. Recall that the forcing is

mono-directional (downward):; hence there is a true "upper" and

a "lower" interface in terms of the acceleration field.
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piscussion of impulse forcing (bi-directional step):

The step forcing function is employed in Figures 4.20-4.28.
This implies that the acceleration is bi-directional (that is,
an interface may experience a favorable density gradient at one
moment and an unfavorable one at another time in its history).

Figures 4.20-4.22 correspond to a liquid/liquid/liquid
configuration (p21-1.0, p31=1.5). Again it is observed that
high surface tension (low Bo values) relate to minimal
distortion of the interfaces. As with the exponential ramp'
forcing function, there is enhancement of perturbation
amplitude at low wave numbers as compared to the zero forcing
cases. In Figure 4.20 (k=0.5) the upper and lower interfaces
are enhanced by 160% and 200%, respectively. This
amplification due to the step function is considerably larger
than the enhancement of the same configuration in the presence
of ramp forcing (Figure 4.11). For k=1.0 (Figure 4.21) there
is slight enhancement of 3% and 10% for interfaces E and F.
Figure 4.22 (k=2.0) shows "negative enhancement”. Note on
Figure 4.22, the lower interface response for Bo=1.0 is in
"phase® with the step forcing function but opposite in
direction. During the period of forcing (t=1 to t=7), the
perturbation 1is in effect opposed, hence the reduction in
amplitude. The long wavelength perturbations (low k values)
are not "in phase" with the selected forcing functions;
therefore, enhancement occurs even if the interface

acceleration is opposite in direction to the forcing.
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Figures 4.23-4.25 are for the case with the density ratios
reversed and offer qualitatively similar results. Since the
configuration is subjected to bi-directional forcing, there is
no true "upper" or "lower" interface with respect to the
orientation of the forcing. Figure 4.23 (k=0.5) shows
enhancements of 215% and 170% for interfaces E and F,
respectively. For k=1.0 (Figure 4.24), the amplification of E
as compared to the zero forcing case is 17% and for F, 21%.
For k=2.0 (Figure 4.25), there is "negative enhancement" at:
both interfaces. Again, note the "phasing" between the lower
interface response and the period of the forcing.

It should be pointed out that the greatest enhancement in
perturbation amplitude for the bi-directional forcing occurs at
the interface with pzl(p3l)=1.5 rather than 1.0. That is, the
interface with a density difference across it experiences
greater enhancement. In general, this trend is typical for
Figures 4.20-4.25.

The gas/liquid/qgas configquration in the pPresence of step
function forcing is represented by Figures 4.26-4.28. In
general, such configurations have more uniform oscillations.
As occurred with exponential ramp forcing, it is the k=2.0
configuration in which differences between the forced and
unforced case are most dramatic. For k=2.0 in the forced case
(Figure 4.28), there is an increase in the amplitude of the
interfaces: E (25%) and F (32%). Recall that for all other

cases with k=2.0, there is "negative enhancement". The
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nphasing" between the interface response and the forcing period

is the critical factor. Note on Figure 4.28, when the forcing

is clipped (t=7), both interfaces are perturbed at a large
amplitude, hence a "positive enhancement"., Comparing with
Figure 4.25, both perturbations have small displacements at
t=7: the oscillation is in "phase" with the forcing period.
Therefore, this case has "negative enhancement". At low k
values (long wavelengths), for the selected forcing functions,
phasing does not occur; thus in general, the impulse forcing
enhances the perturbation.

The effect of unequal Bo values is addressed in Figures
4.29-31, where in each case Bogaz*Boz. That is, the surface
tension of the bottom interface is half that of the top. Note
that the case of equal Bo values appears on the graphs for
purposes of comparison. The cases involving the doubling of
one of the Bo values show an enhancement of the interface
displacement as compared to the equal Bo case. In Figure
4.29, the amplification for Bo3=2*Bo2 is 28% greater at E and
100% larger at F as compared to the equal Bo case. Figure 4.30
shows a different configuration but similar results. The effect
of doubling Bo3 actually has a slight "negative enhancement"
(=1%) on interface E, but a 100% amplification on F,. Figure
4.31 represents a gas/liquid/gas configuration subjected to
ramp forcing. Doubling 803 corresponds to amplifications of

263 on interface E and 58% on interface F. In all cases of

803-2*502, the greatest enhancement occurs on interface F.

118



poubling the Eo value on this interface corresponds to halving
its surface tension. It is of interest that in the
liquid/liquid/liquid configurations (Figures 4.29,4.30),
doubling the Bo value of an interface corresponds to a 100%
amplification of that interface.

It has been discussed that consideration of "long-duration"
responses is not physically realistic due to the absence of
viscosity. Surely viscous effects would play an important
damping role (ie., in time, we would expect that long after the
forcing dies out, the perturbation amplitude should be damped) .
For an inviscid system the perturbations, even in the absence
of any forcing, continue to oscillate ad infinitum. Therefore,
there is no physical relevance to the long-duration response.
However, the extension of calculations out to these larger
times yielded numerical results which are consistent with the
known (mathematical) asymptotic stability of the configuration.

Figures 4.32-4.34 display 1long-duration responses for
various parameters, The two figqures in each left column
represent zero forcing. The oscillatory nature of the
perturbation is apparent. The two figures in the right column
represent the same configuration in the presence of the
designated forcing. Although all three figures show an
enhancement in the amplitude in the case of forcing, this is
not to suggest that impulse forcing causes enhancement of the
zero forcing case for all parameter space. (Recall the ramp

forcing case for k=2.0 where negative enhancements occur.) The
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period of the oscillation in the forced cases is approximately
equal to the period of the zero forcing case. During this time
period (0<t<200), the response of the interfaces is not growing
exponentially in time. Nondimensional time periods up to
t=1000 were examined with similar results.

In general, the presence of impulse forcing causes
enhancement of interface displacement (in the case of low k,
long wavelength disturbances). Depending on the phasing
between the oscillation of the interface and the period of thé
forcing function, a reduction in interface amplitude may occur
for some parameter space, particularly at higher wave numbers.

The interface behavior for a given configuration may be
very different for various impulse accelerations. Recall that
the displacements for the gas/liquid/gas configuration at k=2.0
were smaller in the presence of ramp forcing but were enhanced
when subjected to step forcing. The possibility of enhancement
could cause adverse effects on materials processing

applications.
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Time Response of the Interfaces
effect of unequal Bo
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Time Response of the Interfaces
effect of unequal Bo
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CHAPTER 5

CONCLUSIONS

The effect of microgravity environment accelerations on
the behavior of a multi-layered idealized fluid configuration
has been investigated. The analysis was linear, and each fluid
region was considered inviscid, incompressible, irrotational,
and immiscible. A normal mode approach was taken with regard
to the spatial variables.

As a preliminary study, the stability of the configuration
was investigated in the presence of constant acceleration
fields. Dimensional equation development resulted in a
dispersion relation. The nature of the roots of the dispersion
relation determined the stability of the configuration.

Three parameters were studied, including the wave number
of the perturbation, height of the middle layer, and the value
of the constant forcing. The stability regimes of these
parameters were investigated for various confiqurations
involving air, water, and silicone oil.

The results show that the configuration is most stable to
larger values of the wave number. This implies that the fluid
system is susceptible to long wavelength perturbations. The
change in height of the middle layer has a negligible effect if
the quantity h/A is greater or on the order of one. For values

of h/A < 0(1), faster growing instabilities are associated with

smaller values of h/a.
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Results ihdicate that as the constant forcing wvalue is
decreased, the configuration becomes more stable. The limit
case of zero forcing was investigated and found to be stable
for all parameter values. The zeroc mean gravity state served
as the basis for the ensuing time-dependent cases.

For the periodic case, the equations were
non-dimensionalized. Floquet theory was applied to the system
of equations (3.29-3.32) resulting in an infinite set of
algebraic equations. A truncation was made, and the problen
was posed as a generalized eigenvalue problem. Solutions to
the eigensystem determined the stability of the configuration.

Six non-dimensional parameters were investigated: the
Bond type number at each interface (802,803), the density
ratios of the outer to middle layer (p21,p31), the Froude type
number (Fr), and the wave number (k). Ranges of values studied
are pertinent to a microgravity environment and satisfy
conditions of 1linearity. Results 1indicate several trends
involving these parameters.

As Bo values are increased, the configuration becomes more |
unstable. That is, the unstable range encompasses a wider
range of wave numbers. This trend can be interpreted as
resulting from a decrease in the surface tension (inversely
proportional to Bo) at the interfaces which expectedly would be
more unstable. For unequal Bo values (803- 2*802), the range

of unstéble wave numbers is even greater.

A density difference parameter (le) is expressed in
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terms of Pa, and Py Essentially it equals the average of the
density differences across each interface. 1In general, as Ppy
increases, the configuration becomes more unstable. This treng
corresponds within certain "families" of configurations (for
example, gas/liquid/liquid or liquid/liquid/liquid, etc.)

An decrease in the Froude type parameter (inversely
proportional to the square of the forcing frequency)
corresponds to larger bands of unstable wave numbers. Hence,
the configuration is more unstable to high frequency forcing.

The multi-layered fluid system was found to be '"more
unstable® than the one interface configuration. That is, the
range of unstable wave numbers is smaller in the one interface
case. In particular, one area of contrast was in the very low
k region where regions of stability were present for the one
interface case.

For the non-periodic forcing case, the non-dimensionalized
equations resulted in four ordinary differential equations in
tinme. The system was integrated numerically, and the time
responses of the interfaces were obtained.

Two short-duration impulse type functions were imposed on
the system. Asymptotic stability of the fluid system in the
presence of short-duration accelerations was ascertained via
mathematical analysis, and the numerical results were
consistent. The interfaces respond in a wavelike fashion, but
do not grow exponentially in time, providing that certain

conditions on the forcing function are satisfied.
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In general, the presence of an impulse causes enhancement
of interface perturbation amplitudes (for 1long wavelength
perturbations) as compared to the zero forcing case. For
higher wave numbers, different impulse accelerations can affect
a given configuration quite differently. 1If the oscillation of
the perturbation has "phase correspondence" with the period of
the forcing, a reduction in interface amplitude may occur.
Perturbation enhancement is generally greater in the presence
of the bi-directional step forcing as compared to the
one-directional ramp forcing. While the wave is not growing
exponentially in time, enhancement could cause undesired
consequences for an experiment. For example, a solidification
experiment could be adversely affected by the presence of
impulse forcing.

The results of the idealized fluid system are
qualitatively relevant to specific configuration geometries.
For example, it was determined that the multi-layered case 1is
generally unstable for low wave numbers (long wavelengths).
Certain float zone processing techniques involve a fluid column
which is multi-layered. Such a configuration would need to
avoid long wavelength perturbations. 1In general, it was found
that the multi-layered configuration has a wider band of
unstable wavelengths than the single interface fluid system.
Hence, any space-processing geometry involving multiple layers
of fluids would be more susceptible to instabilities than a one

interface confiquration.

157



Additionally, the subharmonic case is relevant to
space-processing applications. It was discovered that the
fluid system is most unstable at low values of Fr (inversely
proportional to the forcing frequency). The investigation into
the subharmonic case showed that at 1low Fr values, the
subharmonic (A=1/2) occurs at higher wave numbers.

This study involves values of non-dimensional parameters
which are relevant to a microgravity environment.

Configurations involving fluids of specific interest may be

investigated. For example, a typical configuration may have

the following dimensional parameters: pp= 0.8 q/cm3, 1=
-3 -1

1™ 25 dynes/cn, GO- 10 “#* geartn, Wg= 0.5 s ©, and H= 4.0

cm. These values, according to the definition of the non-

dimensional parameters, correspond to values of Fr=1.54 and
802(803)-0.03. The configuration parameters are typical of
what may be expected in microgravity processing applications.
Fluid systems of specific interest may be investigated in such
a manner.

The multi-layer configuration utilized in this study was
idealized. In an actual space-processing application, the
fluid system would be bounded in space; the boundary
conditions pertinent to the container would need to be

considered. A suggested area of future investigation is to

consider finite configqurations.
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APPENDIX 1

Utilization of WVNET Resources

The numerical solution and graphical representation of the

present analytical Problem requires a well-integrated host of

computer resources. The CMS system was accessed via WVNET on a

VT320 terminal. A remote site at the Engineering Sciences

building was used.

Al.1 Numerical Results

The numerical results for Chapters 2,3,and 4 were obtained

by accessing several routines from the IMSL library‘? Programs

which were utilized are found in Appendices 4-9. One solution,

in the case of periodic forcing, involved the eigenvalues of a

very large complex matrix systenm. An enormous amount of

storage space was required for computation. Upon request,

WVNET increased the storage capacity from 4M to 12M. This was

sufficient to run the programs, Alternatively, temporary disks

could be accessed to provide the necessary space. The

following steps were taken to declare the temporary diskx space:

TDSK 192 DISK B CYL 15
FORMAT 192 B
"RELEASE A
RELEASE B
ACCESS 192 3
ACCESS 191 B
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These steps free 15 Spare cylinders of disk space. The

computer now interprets this disk as the A disk and the

original disk as the B disk. Hence, to bring files over to the

temporary diskspace, the following command must be used:

COPY filename FORTRAN B filename FORTRAN A

Once a data file is Ccreated, the file can be transferred back

to the permanent storage using the following command:

COPY filename filetype A filename filetype B

This file is now saved in the permanent directory. After
logging off, the temporary disk memory will be destroyed. This

method was solely used Prior to the increase of storage space.

A typical session using the expanded memory is as follows:
(After logging on to CMs via WVNET.)
DEF STOR 12M

IPL CMS
GETDISK IMSL
FORTVS2 filename

GLOBAL TXTLIB VSF2FORT CMSLIB IMSL1 IMSL2
GLOBAL LOADLIB VSF2LOAD
LOAD filename

START
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Execution will create the desired datafile.

Al.2 Graphical Results

Two options were explored for graphing the results.
Initially the data was downloaded to a diskette via Kermit,
which in turn was plotted using Lotus/123 graphics package on a
Zenith DS computer. While the output was satisfactory, it was
inconvenient and time-consuming to change terminal sites.

The second, and preferred, option was to access CMS
directly through a WVNET line connected to a MacIntosh II PC.
This was accomplished via VersaTerm and VersaTerm Pro
communications. The Program calling IMSL routines was run in
the same manner as with a vT320. The data was then transferred
to a SAS/Graph routine emulating TEK4014 device, which
presented the results graphically. A typical graphing session
is as follows:

COPY datafilename filetype A FORO17 LISTING A

SAS filename of sas program

TEK4014

A typical sas/Graph program is as follows:

CMS FILEDEF FOR0O17 DISK FORO17 LISTING;
DATA;

INFILE FORO17;
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INPUT X Y BO;

PROC GPLOT;

PLOT X*Y=BO;

SYMBOL1 I=SPLINE L=1;
SYMBOL2 I=SPLINE L=21;
SYMBOL3 I=SPLINE L=20;

SYMBOL4 I=SPLINE L=22;

This routine will take three columns of data as input ana

graphically sort according to equal values of Bo.

The plots are converted to MacDraw files from which
hardcopies were obtained from MacDraw I and IT graphic
packages. The advantages to this option are the one-terminal

site capabilities as well as good resolution.
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Method 1:

VT320 Terminal

- CMS system
accessed via
WVNET

DZPORC routine
from IMSL library
called to program

data output

- satisfactory output

Utilization of WVNET Resources:

4 Zenith DS PC

data downloaded to
diskette via Kermit

graphical results
using Lotus/123
graphics package

- inconvenient and time-consuming to change sites



method 2:

Maclntosh I PC

CMS system accessed
via WVNET

IMSL routine
called

output data transferred

to SAS/Graph routine

emulating TEK4014
device

graphs converted to
MacDraw files for
hardcopies

- option of choice
- one-terminal site capabilities
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APPENDIX 2

One Interface System of Equations

The fluid system and analysis is the same as

multi-layer configuration except that there is

for the

only one

interface. The upper region is subscripted by a 2 and the

lower region is subscripted by a 1.

The same governing equations are utilized
following non-dimensionalization:
u = (Go/wf) u

X =( Go/wfz) i

t = (1/w,) t

ot

P = pp(G /u,)?

The interface is given by:

Fe = z - 0 - eC(t)el(1X+mY)
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The velocity potentials in each region are described by:

¢, = [(A()eX? y gl (Iximy) (A2.6)

¢, = [B(t)e ¥F | ol (1x+my) (32.7)

(Note that tildes have been dropped. All quantities are

non-dimensional.)

Application of boundary conditions is similar to that of

the multi-layer configuration. This system reduces to two

linear differential equations which are solved using Floquet

analysis. The one interface system is as follows:

(A+in)cn - kAn = 0

(A2.8)
(AsinjA (1-p5y) c k?op,
+in - + ¥ ————— C_ =0
n n-1 n+1 n (A2.9)
2(1+p,,) Q(1+p,,)
(1-p,,)
_ 21
where Ppy = 5

168



PG G 42
Q = _21_%_ - Bo[ ° ] (A2.10)
0, Hu,

but there is no H, thus the lengthscale (Go/wfz) is used.

Q = Bo(1.0)2 (A2.11)

The problem can now be posed as an eigensystem which is

truncated and solved numerically.
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APPENDIX 3

Stability of Characteristic Equation

According to condition (1) of Sanchez®? (Section 4.3), the

characteristic polynomial of B must be stable (ie. the four

roots of the polynomial must have non-positive real components) .

The polynomial is of the form

A4 + aA2 + b=290 or 32 + as + b

0 (s=A%) (A3.1)

(A3.2)

For guaranteed non-positive real components:
i) a= o0
iiy b> o
iii) az >4 Db

Conditions i) and 1ii) are satisfied simply by the signs of

their components. cCondition iii) requires that the following

inequality must hold true
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2
tl(t2+t3) > T,T Tg (A3.3)

where
3
“k™ Ppy
17 -(1+ ) (1+ )ek + -1) (1~ )eqE
Pay P31 Pay P31

-k k

I o T LB L TOL,
2

Bo, Pp,

-k K
T = (1 pzl). + (1+p21)0

3
Bo; Ppy
2
\ 4 Ppy
T4 T -(1+ ) (1+ )ek +( -1)(1- )e’k
P21 P31 Pa1 P31
6
k
Tg = (-ek + e k) Tg =
802 803
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As an analytical check, condition iii) was investigated

for p = Pa1 = Paqr Boz=Bo3. The following requirement of
stability was obtained:

0 > -4p - (1-p)2e~2K (A3.4)

This is true for all values of p.

Using a root finder, the roots of the characteristic
polynomial were determined for the other parameter cases, and
all roots had non-positive real tomponents. Hence, condition

(1) of Sanchez is satisified.
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APPENDIX 4

Dispersion Solution - Chap 2

This program solves the dispersion relation which was
derived in Chapter 2 of the thesis (equation (2.19)). The
dispersion relation is a fourth order polynomial, the roots of
which are the propagation speeds of the disturbance.

An IMSL routine, ’‘DZPORC’, is called. This routine is a
complex root finder. Solutions are obtained for the various

configurations of interest.
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NONOOOOOOOON0 O

aonon

0000 00

o NoNoNo NoNoNe

THIS IS IN FILE: ‘LAYERS FORTRAN'

THIS ROUTINE SOLVES THE DISPERSION RELATION FOR THE CASE OF
CONSTANT GRAVITATIONAL FIELD.

THE DISPERSION RELATION IS A FOURTH ORDER POLYNOMIAL. THE
FOUR ROOTS ARE COMPLEX AND ARE SOLVED BY CALLING A ROOT
FINDER ROUTINE, ’‘DZPORC’, FROM THE IMSL LIBRARY.

SOLUTIONS ARE OBTAINED FOR THE FOUR CONFIGURATION CASES ACROSS
THE PARAMETER SPACE OF INTEREST.

IMPLICIT REAL#*8 (A-H,0-2)
DIMENSION DEN(3),GAM(3)
REAL*8 COEFF (5),ACFS(5)
COMPLEX*16 ROOT (4)

COMMON/DAT/R1,R2,R3,AH,AG2,AG3,AGRAV, AWN
NDEG=4
G0O=980.0D0

OPEN(UNIT=14,STATUS='/NEW’, FILE='FOR014"’)

DENSITIES OF FLUIDS
DEN(1)=1.0D0
DEN(2)=0.96D0
DEN(3)=0.001225D0

SURFACE TENSIONS
GAM(1)=72.0D0
GAM(2)=40.0D0
GAM(3)=2%5.0D0

DO CASES
CASE 1: AIR/SILICON OIL/WATER

R2=DEN (3)
R1=DEN(2)
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R3=DEN (1)

AG2=GAM(3)
AG3=GAM(2)

WRITE(14,*)’AIR OVER SILICON OIL OVER WATER’
WRITE(14,*) 'DEN2=',R2

WRITE(14,*) /DEN1=’,6R1

WRITE(14,*) 'DEN3=’,R3

WRITE(14,*)'SUR TEN2=',AG2,’SUR TEN3=',AG3

DO 100 I3=1,5
DO 90 I2=1,6
DO 80 Il=1,7

AH=0.5D0+ (I3-1)*0.25D0
AGRAV=GO* (1.0D0~(I2~1)*0.2DO0)
AWN=0.25D0+(I1-1)*0.5D0

WRITE(14,*) 'H=’,AH, ‘GRAV=', AGRAV
CALL DISP(ACFS)
DO 40 I=1,5
COEFF (I)=ACFS (I)

40 CONTINUE

CALL DZPORC(NDEG,COEFF, ROQT)

WRITE(14,*) ‘RT1=’,ROOT(1)
WRITE(14,*) ‘RT2=’,ROOT(2)
WRITE(14,*) ‘RT3=’,ROOT (3)
WRITE(14,*%) 'RT4=’,ROOT (4)

80 CONTINUE

90 CONTINUE

100 CONTINUE

c

c

C CASE 2: AIR/WATER/AIR
R2=DEN (3)
R1=DEN (1)
R3=DEN(3)
AG2=GAM(1)
AG3I=GAM(1)

WRITE(14,*)’ /

WRITE(14,*)’ '

WRITE(14,*)’AIR OVER WATER OVER AIR’
WRITE(14,*) 'DEN2=' ,R2

WRITE(14,*) 'DEN1=’ Rl
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WRITE(14,*) 'DEN3=',R3
WRITE(14,*)’SUR TEN2=,AG2, ‘SUR TEN3=’,AG3

DO 200 J3=1,5

DO 190 J2=1,6

DO 180 J1=1,7
AH=0.5D0+(J3-1)*0.25D0
AGRAV=GO*(1.0DO-(J2-1)*O.ZDO)
AWN=0.,25D0+(J1-1) *0.5D0

WRITE(14,*) ‘H=’ , AH, 'GRAV=’, AGRAV
WRITE(14,*) ‘WAVE NUMBER=’, AWN
CALL DISP(ACFS)
DO 50 J=1,5
COEFF (J) =ACFS (J)

50 CONTINUE

CALL DZPORC(NDEG, COEFF, ROOT)

WRITE (14, %) ‘RT1=',ROOT(1)
WRITE(14,*) ‘RT2=’,ROOT(2)
WRITE(14,*) ‘RT3=',ROOT(3)
WRITE (14, +) 'RT4=',ROOT (4)
180 CONTINUE
190 CONTINUE
200 CONTINUE
c
c
C CASE 3: AIR/SILICON OIL/AIR
R2=DEN (3)
R1=DEN(2)
R3=DEN(3)
AG2=GAM(3)

WRITE(14,%)’ ¢

WRITE(14,#%)’ /

WRITE (14,*) ‘AIR OVER SILICON OIL OVER AIR’
WRITE(14,*) DEN2=’,R2

WRITE(14,*) ‘DEN1=’,R1

WRITE(14,%) ‘DEN3=’,R3

WRITE(14,*) 'SUR TEN2=’,AG2,’SUR TEN3=’,AG3

DO 300 K3=1,5

DO 290 K2=1,6

DO 280 Kil=1,7
AH=0,5D0+ (K3-1) *0.25D0
AGRAV=GO*(1.0D0~(K2-1) *0.2D0)
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AWN=0.25D0+(K1-1)*0.5D0

c
WRITE(14,*) ’H=',AH, ‘GRAV=', AGRAV
WRITE(14,*) ‘WAVE NUMBER=‘,AWN
CALL DISP(ACFS)

DO 60 K=1,5
60 CONTINUE

c
CALL DZPORC (NDEG, COEFF, ROOT)

c
WRITE(14,*) ‘RT1=’,ROOT(1)
WRITE(14,*) ‘RT2=’,ROOT(2)
WRITE(14,*) ‘RT3=’,ROOT(3)
WRITE(14,*) ‘RT4=’,ROOT(4)

280 CONTINUE
290 CONTINUE
300 CONTINUE

c

c

C CASE 4: WATER/SILICON OIL/WATER
R2=DEN (1)

R1=DEN(2)
R3=DEN(1)
AG2=GAM(2)
AG3=GAM(2)

c

WRITE(14,%)’ *

WRITE(14,%)’ *

WRITE(14,#*) 'WATER OVER SILICON OIL OVER WATER’
WRITE(14,*) ‘DEN2=’,R2

WRITE(14,*) ‘DEN1=',R1

WRITE(14,%) DEN3=’ R3

c
DO 400 L3=1,5
DO 390 L2=1,6
DO 380 Ll=1,7
AH=0.5D0+(L3~-1) *0.25D0
AGRAV=GO* (1.0D0~(L2-1) *0.2D0)
AWN=0.25D0+(L1-1) *0.5D0

c
WRITE(14,%) ’H=',AH, 'GRAV=’, AGRAV
WRITE(14,*) 'WAVE NUMBER=’, AWN
CALL DISP(ACFS)

DO 70 L=1,5
COEFF (L) =ACFS (L)
70 CONTINUE
c
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CALL DZPORC(NDEG, COEFF, ROOT)

WRITE(14,*) ‘RT1=’,ROOT(1)
WRITE (14, *) 'RT2=’,RO0T(2)
WRITE(14,*) ‘RT3=’,RO0OT(3)
WRITE(14,*) 'RT4=’,RO0T(4)

380 CONTINUE

390 CONTINUE

400 CONTINUE

CLOSE(14)
STOP
END

SUBROUTINE DISP(ACFS)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION ACFS(5)
COMMON/DAT/R1,R2,R3,AH,AG2,AG3,AGRAV, AWN

COEFFICIENTS
A=R1+R3
B=( (AGRAV/AWN) # (R1-R3) ) - (AG3 *AWN)
C=R1+R2
D=( (AGRAV/AWN) # (R2-R1) ) - (AG2 *AWN)
W=R2-R1
X=( (AGRAV/AWN) * (R2-R1) ) - (AG2 *AWN)
Y=R1-R3
Z=( (AGRAV/AWN) * (R3~R1) ) + (AG3 *AWN)

ACFS(1)=(X+Z)+(B*D*EXP(2.0DO*AWN*AH))
ACFS(2)=0.0D0
ACFS(3)=(W*2)+ (X*Y)+ ( (A¥D+B*C) *EXP (2. 0DO*AWN*AH) )
ACFS(4)=0.0D0

ACFS (5)=(W*Y)+ (A*C*EXP (2.0DO*AWN*AH) )

RETURN
END
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APPENDIX 5

Generalized Eigenvalue Solution - Chap 3

This program solves the large, sparse, generalized
eigenvalue problem which is represented by equation (3.41)
of Chapter 3 (periodic forcing case). Truncation was made at
N=|25| giving rise to an eigensystem of 204 equations.

The complex eigenvalues are determined using ‘DGVLCG’ of
the IMSL library. The eigenvalues are the Floquet exponents of
equations (3.35-3.38). Following computation of the
eigenvalues, only the largest real component will be extracted

for the data set. This represents the fastest growing Floquet

exponent.



NOA0OOOONNDOO0NNNN0 O00ONONOOOONO0O 0O

PROGRAM: NEWPER FORTRAN

3/21/90

RE: PERIODIC MULTI-SLAB ANALYSIS

THIS PROGRAM IS STRUCTURED TO SOLVE A LARGE, SPARSE GENERALIZED
EIGEN VALUE MATRIX, RESULTING FROM AN ANALYSIS OF MULTI-LAYERED

SLABS OF LIQUID UNDER A NORMAL PERIODIC FORCING FUNCTION IN A
MICROGRAVITY ENVIRONMENT.

FLOQUET THEORY WAS APPLIED, GENERATING A SYSTEM OF AN INFINITE
NUMBER OF LINEAR EQUATIONS. THIS SYSTEM WAS TRUNCATED AT 25
WHICH RESULTS IN 204 EQUATIONS.

SINCE THE PROBLEM IS ESSENTIALLY A GENERALIZED COMPLEX
EIGENSYSTEM OF THE FORM, A*Z=W*B#Z, THE ROUTINE ’‘DGVICG’ OF THE
IMSL LIBRARY WILL BE CALLED TO SOLVE FOR THE EIGENVALUES.

THE EIGENVALUES (W) ARE THE FLOQUET EXPONENTS OF THE SYSTEM.

FOLLOWING COMPUTATION OF THE EIGENVALUES, THE LARGEST POSITIVE
COMPONENT IS EXTRACTED FROM EACH ITERATION OF VARIOUS PARAMETERS.
THIS COMPONENT WILL DETERMINE THE STABILITY OF THE CONFIGURATIOXN.

PARAMETER (N=204, NG=S1)

IMPLICIT REAL#*8 (A-H,0-2)

COMPLEX#*16 A(N,N),BLK(4,4),B(N,N)

COMPLEX#*16 ALPHA(N),BETA(N), EVAL(N)

COMPLEX*16 Y11,Y12,Y13,Yl4,Y21,Y22,Y23,Y24,Y31,Y32,Y33,Y34
COMPLEX*16 Y41,Y42,Y43,Y44,Y1,Y2,YB,YT,YDIA

REAL RECO(4),Q(4)

REAL AK

EXTERNAL DGVLCG
COMMON /WORKSP/ RWKSP
REAL RWKSP(332948)
CALL IWKIN(332948)

LDA=N
LDB=N

OPEN(UNIT=16,STATUS='NEW’,FILE='FOR016")

FILLING THE A AND B MATRICES WITH ZEROES PRIOR TO LOADING
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THE NON-ZERO TERMS

DO 5 II=1,N
DO 4 JJ=1,N
A(II,JJ)=(0.0D0,0.0D0)
B(II,JJ)=(0.0D0,0.0D0)
4  CONTINUE
5  CONTINUE

THIS IS THE PARAMETER BLOCK. LOOPS ARE PERFORMED ON THE BOND
NUMBERS (BO2,BO3), THE FROUDE NUMBER (FR), AND THE WAVE NUMBER
(K) .VALUES OF THE DENSITY RATIOS (RH21,RH31) ARE SPECIFIED.

RH21=10.0DO
RH31=0.001225D0
RHD1=(DABS (RH21-1.0D0) +DABS (RH31~1.0D0))/2.0D0

500 NJ=0,0
400 NT=0,0
300 IY=1,1
WN=0.0DO
200 IX=1,50
WN=WN+0. 1D0

8 888

FR=0.01D0

DO 160 NP=0,3
NPP=NP+1
BO2=10.0DO*# (~NP)
BO3=B02

CALCULATING NON-ZERO ELEMENTS THAT WILL BE INSERTED INTO
MATRICES A AND B.

DO 20 M=1,NG
SUB=( (NG*1.0D0)+1.0D0)/2.0DO

CF=(M*1.0D0)-SUB
X13==1.0DO*WN*DEXP (WN)
X14=1.0DO*WN*DEXP(~1.0D0O*WN)
X23==1.0DO*WN
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X24=1.0DO0*WN

X31N=FR*WN+WN#*DEXP (-1.0DO*WN) * (RHD1)

X31D=BO2* (RH21+1.0D0)

X31=X31N/X31D

X34=((1.0D0O~RH21) *DEXP(-2.0DO*WN))/(1.0D0+RH21)
X42=(~-FR*WN*WN* (RHD1) )/ (BO3*(1.0D0+RH31))
X43=(1.0D0-RH31)/(1.0D0+RH31)
XB=-1,0D0*(1.0D0-RH31)/(1.0D0+RH31)
XT=(DEXP(-2.0DO*WN) * (RH21-1.0D0) )/ (RH21+1.0DO)
X1=(FR#*(1.0D0-RH21))/((1.0DO+RH21)*2.0DO*DEXP (WN))
X2=FR*(1.0D0~RH31)/(2.0DO0*(1.0D0+RH31))
X34M=X34*CF

X43M=X43*CF

C ELEMENTS OF 4X4 SUBMATRIX FOR A GIVEN NG.

C

XZER=0.0DO

Y11=DCMPLX (XZER, CF)
BLK(1,1)=Y11

Y12=DCMPLX (XZER, XZER)
BLK(1,2)=Y12

Y13=DCMPLX (X13, XZER)
BLK(1,3)=Y13

Y14=DCMPLX (X14, XZER)
BLK(1,4)=Y14

Y21=DCMPLX (XZER, XZER)
BLK(2,1)=Y21

Y22=DCMPLX (XZER, CF)
BLK(2,2)=Y22

Y23=DCMPLX (X23, X2ER)
BLK(2,3)=Y23

Y24=DCMPLX (X24 , XZER)
BLK(2,4)=Y24

Y31=DCMPLX (X31, X2ER)
BLK(3,1)=Y¥31

Y32=DCMPLX (XZER, XZER)
BLK(3,2)=Y32

Y33=DCMPLX (XZER, CF)
BLK(3,3)=Y33

Y34=DCMPLX (XZER, X34)
BLK(3,4)=Y34

Y4 1=DCMPLX (XZER, XZER)
BLK(4,1)=Y41

Y42=DCMPLX (X42, XZER)
BLK(4,2)=Y42

Y43=DCMPLX (XZER, X43)
BLK(4,3)=Y43

Y44=DCMPLX (XZER, CF)
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BLK(4,4)=Y44

C

C LOADING NON-ZERO TERMS IN MATRIX A
c
Y1=DCMPLX (X1, XZER)
Y2=DCMPLX (X2, XZER)
NL= (4 *M) -3
NU= (4 *M)
K1=0
DO 15 I=NL,NU
K2=0
K1=K1+1
DO 10 J=NL,NU
K2=K2+1
A(I,J)=BLK(K1,K2)
IF(M.EQ.1.0R.M.EQ.NG) GO TO 8
IF (K1.EQ.3) THEN
JB=I-6
JF=I+2
IP1=I+1
JFP=JF+1
JBP=JB+1
A(I,JF)=Y1
A(I,JB)=Y1l
A(IP1,JFP)=Y2
A(IP1,JBP)=Y2
ELSE
END IF
GO TO 10
8 IF (M.EQ.1.AND.K1.EQ. 3) THEN
JF=I+2
IP1=I+1
JFP=JF+1
A(I,JF)=Y1
A(IP1,JFP)=Y2
ELSE
END IF
IP(M.EQ.NG.AND.K1.EQ. 3) THEN
JB=I-6
IP1=I+1
JBP=JB+1
A(I,JB)=Y1
A(IP1,JBP)=Y2
ELSE
END IF
10 CONTINUE
15 CONTINUE
20  CONTINUE
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LOADING NON~ZERO TERMS OF MATRIX B

YB=DCMPLX (XB, XZER)
YT=DCMPLX (XT, XZER)
XN1=-1.0DO
YDIA=DCMPLX (XN1, XZER)
NCT=0
DO 30 L=1,NG
DO 25 MOP=1, 4
NCT=NCT+1
B(NCT,NCT) =YDIA
IF (MOP.EQ. 4) THEN
NM1=NCT-1
B(NCT,NM1)=YB
B(NM1,NCT) =YT
ELSE
END IF
25 CONTINUE
30 CONTINUE

CALL DGVICG (N, A, LDA, B, LDB, ALPHA, BETA)

PROGRAM DGVLCG CALCULATES THE EIGENVALUES OF A GENERALIZED
COMPLEX EIGENSYSTEM.

THE EIGENVALUE (EVAL(N)) IS COMPUTED BY DIVIDING COMPLEX
VECTORS ALPHA(N) BY BETA(N).

THE EIGENVALUES ARE SWEPT OUT IN ORDER OF INCREASING SIZE OF
THE REAL COMPONENT. THUS TO EXTRACT THAT VALUE, ONE NEEDS
ONLY THE N-TH REAL VALUE OF EVAL.

THIS LARGEST REAL COMPONENT (RECO), IS THEN SENT TO A DATA
FILE FOR VARIOUS PARAMETER VARIATIONS.

DO 50 IM=1,N
EVAL(IM)=ALPHA (IM)/BETA (IM)
50 CONTINUE
RECO (NPP) =EVAL(N)

WRITE(16,2)WN,RECO(NPP),BO2
2 FORMAT(1X,F5.2,E10.3,F6.3)

160 CONTINUE
200 CONTINUE
300 CONTINUE
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400
500

CONTINUE
CONTINUE

CLOSE (16)
STOP
END
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APPENDIX 6

Standard Eigenvalue Problem - Chap 3

This program converts the generalized eigenvalue problem
(of form 3 X = A B X) to the standard form of ¢ X =2 X. This
requires premultiplication of both sides by ™! using IMSL
routine ’DLINGC’.

The eigenvalues are calculated using routine ‘DEVLCG’
which wutilizes a different algorithm than the generalized
eigenvalue problen. The Floquet exponents as determined by

both methods will be compared to check accuracy.
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PROGRAM ’LONG’

THIS PROGRAM IS STRUCTURED TO SOLVE A LARGE, SPARSE GENERALIZED
EIGEN VALUE MATRIX, RESULTING FROM AN ANALYSIS OF MULTI-LAYERED
SLABS OF LIQUID UNDER A NORMAL PERIODIC FORCING FUNCTION IN A
MICROGRAVITY ENVIRONMENT.

THE PROBLEM CAN BE CONVERTED FROM A GENERALIZED TO A REGULAR
EIGENVALUE PROBLEM BY PREMULTIPLYING BOTH SIDES BY BINV. THIS
CAN BE CARRIED OUT BY IMPLEMENTING IMSL ROUTINES ‘DLINCG’,
'DMCRCR’, AND FINALLY THE EIGENVALUES CAN BE DETERMINED BY
USING ROUTINE 'DEVLCG’.

PARAMETER (N=204, NG=51)

IMPLICIT REAL*8 (A-H,0-2)

COMPLEX*16 A(N,N),BLK(4,4),B(N,N)
COMPLEX*16 ALPHA(N),BETA(N), EVAL(N)
COMPLEX*16 Yll,YlZ,Y13,Y14,Y21,Y22,Y23,Y24,Y31,Y32,Y33,Y34
COMPLEX*16 Y41,Y42,Y43,Y44,Y1,Y2,YB, YT, YDIA
COMPLEX*16 BINV(N,N),C(N,N)

EXTERNAL DGVLCG, DLINCG, DMCRCR, DEVLCG
COMMON /WORKSP/ RWKSP

REAL RWKSP(332948)

CALL IWKIN(332948)

LDA=N
LDB=N
LDBINV=N
NR=N
LDC=N

OPEN(UNIT-IG,STATUS-'NEW’,FILE-'FOROIS')
FILLING THE MATRICES WITH ZEROES

DO 5 II=1,N
DO 4 JJ=1,N
A(II,J3)=(0.0D0,0.0D0)
B(II,JJ)=(0.0D0,0.0D0)
4 CONTINUE
5  CONTINUE
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PARAMETER BLOCK

BET=0.01D0
WN=1.0DO

DO 300 IY=1,1

WN=WN+0.5D0

DO 200 IX=1,1

BET=BET* (5.0D0*IX)

T2=0.001D0

T3=0,001D0

RH21=0.001225D0

RH31=0.001225D0

RHD1=(DABS (RH21~-1.0D0)+DABS (RH31-1.0D0))/2.0D0

CALCULATING NON-ZERO ELEMENTS

DO 20 M=1,NG
SUB=( (NG*1.0D0)+1.0D0)/2.0D0O

CF=(M*1.0D0) -SUB
X13==1.0DO*WN#*BET*DEXP (WN)

X14=1,0DO*WN*BET*DEXP (-1.0D0*WN)

X23==1.0DO*WN*BET

X24=1.0DO*WN*BET

X3 1N=WN*WN*DEXP(~1.0DO*WN) # (RHD1)

X31D=T2* (RH21+1.0DO0)

X31=X31N/X31D
X34=(-1.0DO*DEXP(-1.0DO*WN) * (RH21-1.0D0) *CF) / (RH21+1.0DO0)
X42=(-1.0DO*WN*WN* (RHD1) )/ (T3*(1.0DO+RH31))
X43=((1.0D0-RH31)*CF)/(1.0D0O+RH31)
XB=-1.0D0*(1.0D0-RH31)/(1.0D0+RH31)
XT=(DEXP(~1.0DO*WN) * (RH21~1.0D0) )/ (RH21+1.0DO)
X1=-1,0D0* (RH21-1.0D0)/ (2.0D0O* (RH21+1.0D0) *DEXP (WN) )
X2=(1.0D0-RH31)/(2.0DO*(1.0D0+RH31))

X34M=X34*CF

X43M=X434CP

ELEMENTS OF 4X4 SUBMATRIX

XZER=0.0DO

Y11=DCMPLX (XZER, CF)
BLK(1,1)=Y11

Y12=DCMPLX (XZER, XZER)
BLK(1,2)=Y12

Y13=DCMPLX (X13, XZER)
BLK(1,3)=Y13

Y14=DCMPLX (X14, X2ER)
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BLK(1,4)=Y14
Y21=DCMPLX (XZER, XZER)
BLK(2,1)=Y21
Y22=DCMPLX (XZER, CF)
BLK(2,2)=Y22
Y23=DCMPLX (X23, XZER)
BLK(2,3)=Y23
Y24=DCMPLX (X24,XZER)
BLK(2,4)=Y24
Y31=DCMPLX (X31, XZER)
BLK(3,1)=Y31
Y32=DCMPLX (XZER, XZER)
BLK(3,2)=Y32
Y33=DCMPLX (XZER, CF)
BLK(3,3)=Y33
Y34=DCMPLX (XZER, X34)
BLK(3,4)=Y34
Y4 1=DCMPLX (X2ER, XZER)
BLK(4,1)=Y41
Y42=DCMPLX (X42, XZER)
BLK(4,2)=Y42
Y4 3=DCMPLX (XZER, X43)
BLK(4,3)=Y43
Y44=DCMPLX (XZER, CF)
BLK(4,4)=Y44
c
C LOADING NON-ZERO TERMS IN MATRIX A
c
Y1=DCMPLX (X1, XZER)
¥Y2=DCMPLX (X2, XZER)
NL=(4*M) =3
NU= (4 *M)
K1=0
DO 15 I=NL,NU
K2=0
Kl=K1+1
DO 10 J=NL,NU
K2=K2+1
A(I,J)=BLK(K1,K2)
IP(M.EQ.1.0R.M.EQ.NG) GO TO 8
IF(K1.EQ.3) THEN
JB=I~6
JF=1+2
IP1=I+1
JFP=JF+1
JBP=JB+1
A(I,JF)=Y1
A(I,JB)=Y1
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A(IP1,JFP)=Y2
A(IP1,JBP)=Y2
ELSE
END IF
GO TO 10
8 IF(M.EQ.1.AND.K1.EQ. 3) THEN
JF=I+2
IP1=I+1
JFP=JF+1
A(I,JF)=Y1
A(IP1,JFP)=Y2
ELSE
END IF
- IF(M.EQ.NG.AND.K1.EQ.3)THEN
JIB=I~6
IP1=I+1
JBP=JB+1
A(I,JB)=Y1
A(IP1,JBP)=Y2
ELSE
END IF
10  CONTINUE
15 CONTINUE
20 CONTINUE

LOADING NON-ZERO TERMS OF MATRIX B

oMo NoNe]

YB=DCMPLX (XB, XZER)
YT=DCMPLX (XT, XZER)
XN1=-1.0D0
YDIA=DCMPLX (XN1, XZER)

NCT=0
DO 30 L=1,NG
DO 25 MOP=1,4
NCT=NCT+1
B(NCT, NCT) =YDIA
IF (MOP.EQ. 4) THEN
NM1=NCT-1
B(NCT,NM1)=YB
B(NM1,NCT)=YT
ELSE
END IF
25 CONTINUE
30 CONTINUE
c
C COMPUTING THE INVERSE OF B
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CALL DLINCG (N, B, LDB, BINV, LDBINV)

MULTIPLYING BINV AND A

CALL DMCRCR (NR,NR,BINV,LDA,NR,NR,A,LDB,NR,NR,C,LDC)

SOLVING FOR THE EIGENVALUES
CALL DEVLCG (N, C, LDC, EVAL)
DO 50 IM=1,N
WRITE(16,*) 'EVAL=',EVAL(IM)
50 CONTINUE
200 CONTINUE
300 CONTINUE

CLOSE(16)
STOP
END
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APPENDIX 7

Determinant Calculation

This program takes the eigenvalues which were determined
by Appendix 5 and substitutes them into equation (3.39). The
determinant of the resulting matrix is calculated to check for
accuracy of the eigenvalues. The determinant should equal zero
if the eigenvalues are accurate.

Routine ’/DLFTCG’ is utilized for LU factorization of the

matrix and computation of the determinant.
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THIS PROGRAM ‘DET FORTRAN’ WILL CALCULATE THE DETERMINANT OF

THE SPARSE MATRIX TO DETERMINE THE ACCURACY OF THE SOLUTION.

THE ROUTINE ‘DLFDCG’ OF THE IMSL PACKAGE WILL BE UTILIZED. THE
LU FACTORIZATION WILL BE NEEDED AND WILL PROVIDED BY CALLING THE
'DLFTCG’ ROUTINE.

THIS PROGRAM IS STRUCTURED TO SOLVE A LARGE, SPARSE GENERALIZED
EIGEN VALUE MATRIX, RESULTING FROM AN ANALYSIS OF MULTI-LAYERED
SLABS OF LIQUID UNDER A NORMAL PERIODIC FORCING FUNCTION IN A
MICROGRAVITY ENVIRONMENT.

SINCE THE PROBLEM IS ESSENTIALLY A GENERALIZED COMPLEX
EIGENSYSTEM OF THE FORM, A*Z=W*B*Z, THE ROUTINE ‘DGVLCG’ OF THE
IMSL LIBRARY WILL BE CALLED TO SOLVE FOR THE EIGENVALUES.

PARAMETER (N=204, NG=51)

IMPLICIT REAL#8(A-H,0-Z)

COMPLEX*16 A(N,N),BLK(4,4),B(N,N)
COMPLEX*16 ALPHA(N),BETA(N), EVAL(N)
COMPLEX*16 FAC(N,N),DET1,AMAT(N,N)
COMPLEX*16 Y11,Y12,Y13,Y14,Y21,Y22,Y23,Y24,Y31,Y32,Y33,Y34
COMPLEX*16 Y41,Y42,Y43,Y44,Y1l,Y2,YB,YT,YDIA
REAL*8 DET2

INTEGER IPVT(N)

EXTERNAL DGVLCG, DLFDCG, DLFTCG

COMMON /WORKSP/ RWKSP

REAL RWKSP(332948)

CALL IWKIN(332948)

LDA=N
LDB=N
LDFAC=N

OPEN(UNIT=19,STATUS=’NEW’ ,FILE='FOR019’)
FILLING THE MATRICES WITH ZEROES

DO 5 II=1,N
DO 4 JJI=1,N
A(II,JJ)=(0.0D0,0.0DO0)
B(II,JJ)=(0.0D0,0.0D0)
4 CONTINUE
S  CONTINUE
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PARAMETER BLOCK

o000 0

BET=0.01D0
WN=1.0DO

DO 300 IY¥Y=1,1
WN=WN+0.5D0

DO 200 IX=1,1
BET=BET* (5.0D0*IX)
T2=0.001D0
T3=0.001D0O
RH21=0.001225D0
RH31=0.001225D0
RHD1=(DABS (RH21-1.0D0)+DABS(RH31-1.0D0))/2.0D0

CALCULATING NON-ZERO ELEMENTS

noOonOon

DO 20 M=1,NG
SUB=( (NG*1.0D0)+1.0D0)/2.0DO

(9]

CF=(M*1.0D0)-SUB
X13=-1.0DO*WN*BET*DEXP (WN)
X14=1.0DO*WN*BET*DEXP (~1.0DO*WN)
X23=~1.0DO*WN*BET
X24=1,0DO*WN*BET
X3 1N=WN*WN#*DEXP (~1.0DO*WN) * (RHD1)
X31D=T2* (RH21+1.0D0)
X31=X31N/X31D
X34=(~-1.0DO*DEXP(~1.0DO*WN) * (RH21-1.0D0) *CF) / (RH21+1.0D0)
X42=(=-1.0DO*WN*WN# (RHD1) )/ (T3*(1.0D0O+RH31))
X43=((1.0D0=-RH31) *CF)/(1.0DO+RH31)
XB=-1.0DO*(1.0D0-RH31)/(1.0D0+RH31)
XT=(DEXP(~1.0D0O*WN) * (RH21-1.0D0) )/ (RH21+1.0DO0)
X1=-1.0DO0*(RH21-1.0D0)/(2.0DO* (RH21+1.0D0) *DEXP (WN) )
X2=(1.0D0-RH31)/(2.0DO*(1.0D0+RH31))
X34M=X34*CF
X43M=X43#CF
c
C ELEMENTS OF 4X4 SUBMATRIX
c
XZER=0.0DO
Y11=DCMPLX (XZER, CF)
BLK(1,1)=Y1l
Y12=DCMPLX (XZER, XZER)
BLK(1,2)=Y12
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Y13=DCMPLX (X13, XZER)
BLK(1,3)=Y13
Y14=DCMPLX (X14,XZER)
BLK(1,4)=Y14
Y21=DCMPLX (XZER, XZER)
BLK(2,1)=Y21
Y22=DCMPLX (XZER, CF)
BLK(2,2)=Y22
Y23=DCMPLX (X23, XZER)
BLK(2,3)=Y23
¥24=DCMPLX (X24 , XZER)
BLK(2,4)=Y24
¥31=DCMPLX (X31, XZER)
BLK(3,1)=Y31
Y32=DCMPLX (XZER, X2ZER)
BLK(3,2)=Y32
Y33=DCMPLX (XZER, CF)
BLK(3,3)=Y33
Y34=DCMPLX (XZER, X34)
BLK(3,4)=Y34
Y41=DCMPLX (XZER, XZER)
BLK(4,1)=Y41
Y42=DCMPLX (X42, XZER)
BLK(4,2)=Y42
Y4 3=DCMPLX (XZER, X43)
BLK(4,3)=Y43
Y4 4=DCMPLX (XZER, CF)
BLK(4,4)=Y44
c
C LOADING NON-ZERO TERMS IN MATRIX A
c
Y1=DCMPLX (X1, XZER)
Y2=DCMPLX (X2, XZER)
NL=(4*M) -3
NU= (4 *M)
K1=0
DO 15 I=NL,NU
K2=0
Kl=K1+1
DO 10 J=NL,NU
K2=K2+1
A(I,J)=BLK(K1,K2)
IF(M.EQ.1.0R.M.EQ.NG) GO TO 8
IF(K1.EQ.3)THEN
JB=I~6
JF=I+2
IP1=I+1
JFP=JF+1

195



(N NoNp]

JBP=JB+1

A(I,JF)=Y1
A(I,JB)=Y1
A(IP1,JFP)=Y2
A(IP1,JBP)=Y2

ELSE

END IF
GO TO 10
8 IF(M.EQ.1.AND.K1.EQ. 3) THEN
JF=1+2
IP1=I+1
JFP=JF+1
A(I,JF)=Y1
A(IP1,JFP)=Y2
ELSE
END IF
IF(M.EQ.NG.AND.K1.EQ.3) THEN
JB=I-6
IP1=I+1
JBP=JB+1
A(I,JB)=Y1
A(IP1,JBP)=Y2
ELSE
END IF
10 CONTINUE
15 CONTINUE
20 CONTINUE

LOADING NON-ZERO TERMS OF MATRIX B

YB=DCMPLX (XB, XZER)
YT=DCMPLX (XT, XZER)
XNl=-1.0D0
YDIA=DCMPLX (XN1, XZER)
NCT=0
DO 30 L=1,NG
DO 25 MOP=]},4
NCT=NCT+1
B(NCT,NCT) =YDIA
IF(MOP.EQ. 4) THEN
NM1=NCT=-1
B(NCT,NM1)=YB
B (NM1,NCT) =YT
ELSE
END IF
25 CONTINUE
30 CONTINUE
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CALL DGVLCG (N, A, LDA, B, LDB, ALPHA, BETA)

DO 50 IM=1,N
EVAL(IM)=ALPHA (IM)/BETA(IM)
50 CONTINUE

a0

200 CONTINUE
300 CONTINUE

COMPUTE NEW MATRIX A=A-W*B

0OOOO0

DO 500 MM=1,N
DO 400 IL=1,N
DO 350 JL=1,N
AMAT (IL,JL)=A(IL,JL)
A(IL,JL)=AMAT(IL,JL)-(EVAL(MM)#B(IL,JL))
350 CONTINUE
400 CONTINUE

FACTORING MATRIX A

CALL DLFTCG (N, A, LDA, FAC, LDFAC, IPVT)

COMPUTE THE DETERMINANT OF THE FACTORED MATRIX

CALL DLFDCG (N, FAC, LDFAC, IPVT, DET1, DET2)

WRITE(19,*)DET1,DET2

0O 00 0000 000

DO 460 IR=1,N
DO 450 JR=1,N
A(IR,JR)=AMAT(IR,JR)
450 CONTINUE
460 CONTINUE
500 CONTINUE
CLOSE (19)
STOP
END
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APPENDIX 8

One Interface Solution -Chap 3

As discussed in section 3.4a, a limit approximation is
compared to the 1 interface system of equations (see Appendix
2). The two linear equations (A2.8,A2.9) are solved using
Floquet analysis resulting in a standard eigensysten.

Routine ’DEVLCG’ is used to determine the eigenvalues of
the 1 interface configuration. The results are used to compare

the limit approximation for the 2 interface system.
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OOO0OOQOO00O00O0000 0

(s NoNe]

THIS IS A CHECK FOR ONE INTERFACE

THIS PROGRAM SOLVES THE EIGENSYSTEM RESULTING FROM A ONE
INTERFACE CONFIGURATION.

THE SYSTEM REDUCES TO TWO LINEAR DIFFERENTIAL EQUATIONS WHICH
ARE SOLVED VIA FLOQUET ANALYSIS IN THE SAME MANNER AS THE

TWO INTERFACE SYSTEM.

A STANDARD EIGENVALUE PROBLEM IS OBTAINED AND IS SOLVED USING
'DEVLCG’ FROM THE IMSL LIBRARY.

PARAMETER (N=102,NG=51)

IMPLICIT REAL#*8 (A-H,0-2)
COMPLEX*16 A(N,N), BLK(2,2)
COMPLEX*16 EVAL(N)

COMPLEX*16 Y11, Y12, Y21, Y22, YOUT
EXTERNAL DEVLCG

COMMON /WORKSP/ RWKSP

REAL RWKSP(332948)

CALL IWKIN(332948)

LDA=N
OPEN (UNIT=16,STATUS='NEW’,FILE='FORO16’)

FILLING THE A MATRIX WITH ZEROES
DO 5 I=1,N
DO 4 J=1,N
A(I,J)=(0.0D0,0.0DO0)

4 CONTINUE

5  CONTINUE

PARAMETER BLOCK
RH21=0.001225D0
DO 500 NJ=0,0
Q=1.0D0*10.0DO**NJ
WN=0,0D0
DO 400 NT=1,50
WN=WN+0.05D0

CALCULATING NON-ZERO TERMS OF A

DO 100 M=1,NG
SUB=( (NG*1.0D0)+1.0D0)/2.0D0
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CF=(M*1.0D0) -SUB
X21==Q*WN*WN
X12=WN
XOUT=(1.0D0-RH21)/(2.0D0% (1.0D0+RH21))
FC=-CF
c
C ELEMENTS OF 2X2 BLOCK
XZER=0.0DO
Y11=DCMPLX (XZER, FC)
BLK(1,1)=Y11
Y12=DCMPLX (X12, XZER)
BLK(1,2)=Y12
Y21=DCMPLX (X21, XZER)
BLK(2,1)=Y21
Y22=DCMPLX (XZER, FC)
BLK(2,2)=Y22
YOUT=DCMPLX (XOUT, XZER)
c
C LOADING TERMS OF A
MP=(2%M) -1
MP1=MP+1
MPM=MP1-3
MPP=MP1+1
A(MP,MP)=BLK(1,1)
A(MP,MP1)=BLK(1,2)
A(MP1,MP)=BLK(2,1)
A(MP1,MP1)=BLK(2,2)
IF(M.NE.1) THEN
A (MP1,MPM) =YOUT
ELSE
END IF
IF (M.NE.NG) THEN
A(MP1,MPP) =YOUT
ELSE
END IF

100 CONTINUE

CALL DEVLCG (N, A, LDA, EVAL)

RECO=EVAL(N)
UNUM=1.0

0O 0O o0 00 0

WN=WN+0.05D0
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28

400
500

WRITE(16,28)WN,UNUM, RECO
FORMAT (1X,F5.2,F6.3,E10.3)

WN=WN-0.05D0

CONTINUE
CONTINUE

CLOSE(16)
STOP
END
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APPENDIX 9

Time Response of Interfaces - Chap 4

For the non-pericdic forcing case, a system of linear
differential equations in terms of (E,F,E,F) 1is obtained
(equations (4.22,4.23)). E and F are the displacements of the
upper and lower interfaces, respectively. '

The system of equations is integrated numerically using
‘DIVPAG’ of the IMSL library. This routine utilizes Gear’s to

solve for the time-dependent coefficients.
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o0 00 O OOOO00O00O00O00O00 O

0

0o o000 0O

THIS FILE IS CSLAB FORTRAN

THIS PROGRAM INTEGRATES THE FOURTH ORDER MULTI-SLAB
FORCED LINEAR SYSTEM, CONSISTING OF E(T),F,DE/DT,DF/DT
( ALL FCNS. OF T)
THE FORCING IS **NOT*** PERIODIC
GEAR’S METHOD IS USED--PROB MAY BE STIFF.
IMSL LIBRARIES ARE USED.
PARAMETER VALUES ARE CHOSEN.

INTEGER NEQ,NPARAM
PARAMETER (NPARAM=50,NEQ=4)

INTEGER IDO, IEND,IMETH, INORM,NOUT

REAL*8 A(1,1),FCN,FCNJ,HINIT, PARAM(NPARAM) ,TOL, T, TEND, Y (NEQ)
REAL*8 AK,B2,B3,R21,R31,RHD1 '
REAL*8 EE(3),FF(3)

EXTERNAL FCN, DIVPAG,SSET,UMACH

COMMON/DAT/AK, B2,B3,R21,R31,RHD1

OPEN(UNIT=24,STATUS='NEW'’ ,FILE='FOR024")

COUNTER
KK=0
JEDE=0
PARAMETER VALUES
AK=1.0DO
B2=1.0D0
B3=1.0D0
R21=0.001225D0
R31=0.001225D0
RHD1=(DABS (R21-1.0D0) +DABS (R31-1.0D0))/2.0DO

DO 200 ID=0,1

B2=10.0D0*# (-ID)
B3=B2

PP=ID+1

SET INITIAL CONDITIONS
T=0.00D0
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NN 0O

50

28

60

E=Yl1, DE/DT=Y2, F=Y3, DF/DT=Y4

SET

SET

CC=-0.05D0
DD=0.05D0

Y(1)=0.00D0
Y (2) ==AK*CC*DEXP ( -AK)
Y(3)=0.00D0
Y (4) =AK+*DD

PROGRAM SWITCHES/VALUES
HINIT=0.0001DO

INORM=1

IMETH=2

CALL SSET(NPARAM,0.0,PARAM, 1)
PARAM (1) =HINIT
PARAM(10)=INORM
PARAM(12)=IMETH

ERROR TOLERANCE

TOL=1.0D-5

WN=AK
BO2=B2
BO3=B3

IDO=1
DO 100 II=1,5000

TEND=0.01DO*II

CALL DIVPAG(IDO,NEQ,FCN,FCNJ,A,T,TEND,TOL, PARAM, Y)
KK=KK+1

IF (KK.EQ.10) GO TO 50

GO TO 60

CONTINUE

JEDE=JEDE+1

TT=T

GRAV=G (T)
IF(JEDE.GE.150)GRAV=0.0D0
WRITE (24,28)T,Y(1),Y(3),BO2
FORMAT (1X,4F9.4)

KK=0
CONTINUE
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100 CONTINUE

c
c RELEASE WORKSPACE
IDO=3
CALL DIVPAG(IDO,NEQ,FCN,FCNJ,A,T,TEND, TOL, PARAM, Y)
c
200  CONTINUE
c
CLOSE (24)
END
c
SUBROUTINE FCN(NEQ,T,Y,YP)
INTEGER NEQ
REAL*8 T,Y(NEQ),YP(NEQ) _
REAL*8 CF1N,CF1D,CF1,CF2N,CF2D,CF2,CBLK2,CBLK3, CFA, CFB
REAL#*8 AK,R2,R3,RHD1,B2,B3
COMMON/DAT/AK, B2, B3,R2,R3, RHD1
o
CF1N=-2,0DO*AK*DEXP (-AK)
CF1D=(1,0D0+R3)#(1.0D0+R2)+(1.0D0-R3) *(R2~1.0D0)
& *DEXP(-2.0D0*AK)
CF1=CF1N/CF1D
CF2N=AK#* ((R2-1.0D0) *DEXP(-2.0DO¥AK) - (R2+1.0D0) )
CF2D=CF1D
CF2=CF2N/CF2D
CBLK2= (AK*AK/B2) # (RHD1) - (R2~1, 0DO0) *G (T)
CBLK3= (AK*AK/B3) # (RHD1) - (1.0D0-R3) *G(T)
CFA=(1.0D0-R3)/(1.0D0+R2)
CFB=AK/ (1.0D0+R2)
C
c
YP(1)=Y(2)
YP(2)=(CF1#CFA*DEXP (-AK) ~CFB) *CBLK2+*Y (1)
& +CF1*CBLK3*Y(3)
YP(3)=Y(4)
YP(4)=(DEXP(~AK) * (CF2*CFA-CFB) *CBLK2) *Y (1) +CF2*CBLK3*Y (3)
RETURN
END
c
c

FUNCTION G(T)

REAL*8 G,T

IF(T.LT.1.0) G=0.0DO
IF(T.GE.1.0.AND.T.LT.2.0)G=T-1.0D0
IF(T.GE.2.0.AND.T.LT.3.0)G=1.0D0
IF(T.GE.3.0.AND.T.LT.5.0)G=~-T+4.0D0
IF(T.GE.5.0.AND.T.LT.6.0)G=-1.0D0
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IF(T.GE.6.0.AND.T.LT.7.0)G=T~7.0D0

IF(T.GE.7.0D0)G=0.0D0
RETURN
END

SUBROUTINE FCNJ(NEQ,T,Y,YP)
DUMMY

RETURN

END
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